Читать «Юный техник, 2000 № 02» онлайн - страница 51

Журнал «Юный техник»

Если в школе есть лазер, то показать это явление не сложно. Направьте луч на стенку — и весь класс, даже при незашторенных окнах, увидит отчетливое красное пятно. Теперь пересечем лазерный луч дифракционной решеткой — так называется кусок стекла или фотопленки, на которые нанесено множество тонких штрихов. Пятно на стене разлетится на множество ярких красных пятен.

На первый взгляд прекрасно. Эффект доказан и показан сразу всем. Но… вдумчивый ученик заметит рафинированную искусственность лазерного света. Возникнет сомнение: а так ли все происходит со светом обычным?

Почти все опыты по волновой природе света требуют очень ярких точечных источников. Яркость даже обычного школьного лазера сравнима с яркостью атомного взрыва в одну килотонну, наблюдаемого с расстояния в один км. Неудивительно, что даже с ярчайшими дуговыми и газоразрядными лампами подобные опыты получаются лишь в хорошо затемненном помещении, а детали их плохо видны с задних рядов.

В школах такие источники света, как лазер, встречаются редко, а поскольку с лампами накаливания опыты получаются плохо, их часто попросту не показывают.

А зря. Лучше отказаться от группового показа и перейти к индивидуальным лабораторным работам. Их можно провести, опираясь на самые простые средства. Об этом можно прочесть в очень редкой книге, изданной Академией педагогических наук РСФСР: Башкатов М Н. и Огородников Ю.Ф. «Школьные опыты по волновой оптике». Москва, 1960 г. Авторы отмечают, что в своей работе опирались на методику одного из основоположников волновой теории света, Огюстена Жана Френеля.

Суть опытов заключается в том, что наблюдение ведется не на проекции экрана, а с помощью простой лупы. Свет, отраженный экраном, почти полностью рассеивается, и лишь ничтожная (едва ли не миллионная) часть попадает в глаза наблюдателя. Лупа же собирает практически весь свет. И такие опыты можно провести даже в слегка затемненном уголке классной комнаты.

Источником света послужит обычная лампа карманного фонаря с подставкой, которая имеется во всех физических кабинетах. Нить накаливания в ней располагается горизонтально. Это очень удобно. Поворачивая подставку, нить можно наблюдать то во всю длину, то с торца. В первом случае она работает как протяженный источник света, во втором — как точечный. Наблюдаемые предметы помещаются на расстоянии примерно в один метр. Тогда форма фронта световой волны максимально приближается к идеальной сферической.

Но волновые эффекты удастся наблюдать только в том случае, если вы правильно пользуетесь лупой (рис. 1).

На этом придется остановиться подробнее.

От лампы на лупу падает расходящийся пучок света (MN — сечение этого пучка фокальной плоскостью лупы), а пройдя сквозь нее, после преломления выходит сходящийся пучок. Однако за фокусом линзы и он расходится.

Чтобы видеть все сечение MN, в котором происходят волновые процессы, надо поместить лупу от глаза на расстоянии немного больше фокусного, чтобы она казалась равномерно и ярко освещенной. А имеющиеся в школах лабораторные линзы с фокусными расстояниями 7 и 14 см советуем располагать на расстояниях 8 и 16 см от глаза соответственно.