Читать «Гравитация. От хрустальных сфер до кротовых нор» онлайн - страница 161

Александр Николаевич Петров

Gab + Λgab = κTab.

Это не помогло – статическое космологическое решение этих уравнений существует, но это решение неустойчиво, следовательно, не может быть моделью реального мира. Тем не менее, понятие космологической постоянной оказалось востребованным, особенно в последнее время.

5. Координаты Леметра

В этом дополнении мы обсуждаем координаты для черной дыры Шварцшильда, свободные от дефектов на горизонте. Их предложил Леметр, как систему отсчета, сопутствующую свободно падающим наблюдателям. Смысл ее в том, что в каждую точку пространства помещается наблюдатель. Наблюдатели никак не взаимодействуют между собой, они лишь свободно падают к центру, формально представляя собой точки. Каждому наблюдателю приписываются три пространственных координаты, которые вместе образуют пространственные координаты всего пространства-времени. А собственное время каждого наблюдателя вместе определяет координатное время новой системы отсчета. Форма решения сохраняет сферическую симметрию, поэтому можно сказать, что Леметр сделал переход от шварцшильдовых координат t и r к координатам сопутствующих наблюдателей (сопутствующей системе отсчета) τ и R.

Рис. Д1. Пространство-время геометрии Шварцшильда в сопутствующих координатах Леметра

Мы не приводим форму решения Леметра, а вот диаграмма на рис. 8.2 в его координатах принимает форму, представленную на рис. Д1. Обсудим ее. Наклонные на рис. Д1 соответствуют вертикальным линиям постоянных значений координаты r на рисунке 8.2, включая линии горизонта r = rg и сингулярности r = 0. Вертикальные на рис. Д1 – мировые линии сопутствующих наблюдателей. Как видно, они без помех пересекают горизонт.

Проследим за формой световых конусов на рис. Д1. Вне горизонта наклон «лепестков» превосходит 45º, на горизонте он равен 45º, а под горизонтом становится все меньше: конусы сужаются при приближении к «центру». Поскольку распространение лучей света происходит как раз по направлению конусов, а материальных частиц – по мировым линиям внутри конусов, то ясно, что вне горизонта r = rg возможно движение с удалением от горизонта во внешнюю область. По достижении горизонта такое движение невозможно. Под горизонтом становится неизбежным движение к «центру».

6. Система отсчета ускоренных наблюдателей

После того как определены понятия пространства Минковского в главе 5, собственного времени в главе 7 и горизонта событий в главе 8, интересно обсудить пространство-время ускоренных наблюдателей. Пусть один из таких наблюдателей движется прямолинейно вдоль оси x в пространстве Минковского с постоянным ускорением c2/X в направлении x. Пусть таких наблюдателей много и их ускорения меняются от бесконечности до нуля, что соответствует изменению X от 0 до ∞.

На рис. Д2 на диаграмме пространства Минковского в лоренцевых координатах x и t изображены мировые линии таких ускоренных наблюдателей: каждому наблюдателю соответствует свое значение X. Чем больше ускорение наблюдателя, тем его мировая линия ближе к началу координат. Ускорение каждого из них направлено в сторону увеличения x. Поэтому изначально двигаясь к началу координат, они снижают скорость до нуля при t = 0, а затем движутся в обратном направлении.