Читать «Энергия и жизнь» онлайн - страница 116

Николай Савельевич Печуркин

Можно ли утверждать, что мы одиноки во Вселенной, потеряны «как иголка в стоге сена», что именно «наша жизнь — уникальное явление» (по И.С. Шкловскому). Эту гипотезу можно защищать, если оставаться на методологических позициях только субстратного подхода с его идеей внутреннего саморазвития и самосовершенствования жизни (грубо говоря: хочу — развиваюсь, хочу — нет).

Субстратно-энергетический подход определяет концепцию «презумпции естественности», и даже более — неизбежности возникновения жизни. Для этого нужно немного: потоки энергии, которые пронизывают в виде излучений (полей) всю Вселенную, и достаточный их уровень, чтобы устроить в скоплениях вещества, в жидких фазах планет «игры» отбора структур, способных наименьшим веществом с высокой скоростью взаимодействовать с этими потоками.

Попробуем оценить число планет, на которых имеются цивилизации с высокоразвитыми (по энергетике) технологиями. Для этого используем широко известную формулу Дрейка в применении к нашей Галактике:

N = n · P1 · P2 · P3 · P4 · t/T.

Здесь n — полное число звезд в Галактике; множители Pi имеют вероятностный характер: P1 — вероятность того, что звезда имеет планетную систему; P2 — вероятность наличия на планете жизни; P3 — вероятность существования разума; P4 — вероятность наличия высокоразвитой технологии, прежде всего по энергетике; t — средняя продолжительность технологической эры; T — возраст Галактики. Определенные численные значения имеют n и T. Для нашей Галактики это 2·1011 звезд и 15·109 лет ее существования. С позиций субстратного подхода вероятностные величины совершенно не определены и, пожалуй, неопределяемы. Особенно не ясно, что такое t — время существования технологической эры, так как предполагается, что цивилизации (как всякие структуры: организмы, виды, государства) должны существовать конечное время. Применение С+Э подхода позволяет существенно уточнить обсуждаемые характеристики.

Прежде всего, для оценки величин P2, P3, P4, вероятностей наличия жизни, разума и развитой технологии соответственно нужно взять довольно высокие цифры. Весь предыдущий анализ показал, что жизнь возникает с неизбежностью и быстро развивается в сторону умощнения энергетики при наличии возмущающих потоков энергии и определенных (не очень узких) условий среды на планете. Если доля звезд с подходящими планетами составляет 1% (т.е. P1 ~ 0,01), то можно положить Pi = 0,1÷1 (где i = 2, 3, 4). Величина 0,1 (или 10%-ная вероятность) явно занижена, но не будем фаталистами. Тогда число развитых цивилизаций будет

N = 2 · 1011 · 10–2 (0,1÷1) (0,1÷1) (0,1÷1) t/T.

Оценим время существования технологически развитой цивилизации. Совершенно не требуется, чтобы она отмирала со временем. С позиций субстратно-энергетического подхода это — нонсенс! Не особая структура государства, не отдельный этнос определяют технологию: от палеолита, рабовладельческого строя и далее энергетика цивилизаций росла, несмотря на смены ее конкретных носителей, народов и государств. Факел энергетики разгорался со временем все ярче, хотя иногда и потрескивал и помигивал. Поэтому энергетическая технология не имеет тенденций к отмиранию, напротив, она только совершенствуется — того требует С+Э подход к изучению эволюции на нашей планете. Технически развитая цивилизация, таким образом, никак не обречена. Время ее существования зависит только от продолжительности ее зарождения и развития. Для нашей планеты оно составляет 4 млрд лет. Округляя в «худшую» сторону, время задержки можно положить в среднем равным половине T, т.е. 7–8 млрд лет. («Ухудшение» действительно явное, если не забывать, что планета наша и светило заметно периферийны) Таким образом, отношение t/T будет равно примерно половине единицы. Теперь найдем и границы числа возможных развитых цивилизаций: