Читать «В лабиринте чисел» онлайн - страница 5
Владимир Артурович Левшин
— Хотел бы я на них посмотреть! — недоверчиво усмехнулся Чит.
— Нет ничего проще. Возьмём единицу и умножим её на два. Получим 2. Двойку снова умножим на два…
— Получим 4.
— Четыре, в свою очередь, удвоим опять. И так будем удваивать каждое вновь полученное число. Вот тебе и другой, не натуральный, но тоже бесконечный ряд чисел, где каждое последующее число вдвое больше предыдущего: 1, 2, 4, 8, 16, 32, 64…
— Хорошо, — согласился Чит, — пусть ряд не натуральный. Но ведь начало у него всё равно есть: единица.
— Пока что начало есть, но сейчас оно исчезнет, — весело пообещала Ари. — Итак, мы получили бесконечно возрастающий ряд чисел, где каждое последующее число вдвое больше предыдущего. Теперь подумай: можем мы перевернуть это определение и сказать, что каждое предыдущее число этого ряда вдвое меньше последующего?
— Ну, можем, — милостиво разрешил Чит. — Что в лоб, что по лбу.
— Вот и пройдёмся по этому ряду в обратном направлении. Начнём, скажем, с четырёх. Четыре вдвое меньше восьми, двойка вдвое меньше четырёх, единица вдвое меньше двух…
— Стоп! — крикнул Чит. — Дальше единицы ехать некуда.
— С чего ты взял? Разве нельзя и единицу разделить на два? А половину её опять на два? А новую половину снова на два… И так опять-таки до бесконечности. Вот мы и получили числовой ряд без конца и без начала. Ведь как нет такого БОЛЬШОГО числа, которое нельзя увеличить вдвое, так нет и такого МАЛОГО, которое нельзя вдвое уменьшить.
— Твоя взяла! — сдался Чит. — Этот ряд и впрямь без конца и без начала. Но уж середина у него есть наверняка: единица.
— Почему ты решил?
— Потому что по обе стороны единицы расположено одинаково бесконечное количество чисел.
— Допустим. Но разве нельзя сказать, что одинаково бесконечное количество чисел расположено по обе стороны двойки? Или восьмёрки?
— Постой, Ари, — вышел из себя Чит, — что ты говоришь? По-твоему, получается, что середина у этого бесконечного ряда везде?
— Вот именно везде. Или нигде. Как тебе заблагорассудится. То, что не имеет ни конца, ни начала, вполне может не иметь и середины.
Ари взглянула на Чита и невольно улыбнулась: он был такой сердитый, такой взъерошенный…
— Что, брат, сложно? Ничего не поделаешь — бесконечность! Когда-нибудь познакомишься с ней получше и поймёшь, что в бесконечности свои законы, свои правила вычислений. Но всё это будет когда-нибудь. А пока нам с тобой пора на следующую остановку —
Всевозможные нумерации
— Всевозможные нумерррации! Всевозможные нумерррации! — картаво и раскатисто повторил кто-то, и Чит оказался нос к носу с большим почтенным попугаем.
Попугай перебирал лапками, вращая надетый на ось барабан, из которого время от времени выскакивали разноцветные бумажки, и выкрикивал заученные слова:
— Всевозможные нумерррации! Миррровой аттррракцион! Безденежно-цифровая и числовая лотерея! Приобретайте билетики! Всевозможные нумерррации! Миррровой аттррракцион…
— Сколько можно повторять одно и то же! — не выдержал Чит. — Неужели эта глупая птица не знает ничего другого?