Читать «Юный техник, 2004 № 01» онлайн - страница 9

Журнал «Юный техник»

Рассказывает академик А.Коротеев.

— В 50 — 60-е годы XX века мы были головным предприятием по ракетным двигателям и космической энергетике в нашей стране. Принимали мы участие и в работах по ядерному ракетному двигателю, — рассказал академик. — Это была весьма крупная и совершенно секретная программа, с которой связывались весьма амбициозные планы и у нас, и в США. В экспозиции нашего заводского музея и поныне можно увидеть один из образцов такого двигателя, который успешно прошел испытания, проработав 920 с и показав неплохие данные по удельной тяге — лучше, чем в аналогичных американских разработках…

Затем, как уже говорилось выше, по разным причинам разработки были прекращены. Но сегодня, похоже, мы переживаем момент ренессанса в ядерной тематике. И новый генеральный директор НАСА Шон О’Кифи, когда приезжал в мае 2003 года в Россию, на вопрос о ядерном двигателе прямо сказал, что иного пути дальнейшего развития межпланетных исследований он просто не видит.

Схемы работы ЯРД, что для ракеты, что для самолета, довольно похожи. Через тепловыделяющую сборку, внутри которой находятся уран-карбид-графитовые элементы, пропускают либо забортный воздух (в случае полета в атмосфере), либо специальный газ (скажем, водород) при полетах в космосе. Газ этот разогревается до температуры свыше 3000 °C. Вытекая через сопло, он создает мощную тягу, благодаря чему летательный аппарат, а в особенности космический корабль, может двигаться с очень высокими скоростями.

Такова схема двигателя так называемой открытой тяги. Она может быть очень эффективна в открытом космосе. Однако для использования в пределах Земли и околоземном пространстве она вряд ли пригодна. И вот почему.

Прежде всего, ЯРД открытой тяги выбрасывает из сопла газ, сильно загрязненный радиацией. И это создает большие сложности уже в процессе наземной отработки подобных двигателей на стендах — нужно думать, как защитить от радиации обслуживающий персонал. Поэтому на практике, наверное, будут использовать ядерные двигатели, работающие по закрытой схеме. В них тот же разогретый водород первичного контура может быть использован для нагрева теплоносителя во вторичном контуре. А уж тот используется для выработки электроэнергии или для нагрева рабочего тела в ракетном двигателе, скажем, электроплазменного типа. Такая схема несколько сложнее, зато и радиоактивной «грязи» от нее значительно меньше.

Разработка электроплазменных двигателей уже ведется, и вполне успешно. За разработку таких двигателей для коррекции и стабилизации орбиты группа сотрудников Центра имени Келдыша, КБ «Факел», НПО прикладной механики, МАИ и некоторых других организаций недавно была удостоена Государственной премии.

Движущая сила здесь возникает следующим образом. В рабочей камере такого двигателя, между анодом и катодом, прикладывается высокое напряжение. И получающийся при этом поток ионов, управляемый магнитным полем, с силой выбрасывается через сопло. Главным преимуществом электроплазменных двигателей является их куда более высокая тяговая эффективность. Скажем, в свое время «Фау-2» — первая ракета, которая практически пошла в дело, — имела двигатель, удельная тяга которого была лишь вдвое меньше, чем у многих нынешних ракет. Между тем, их двигатели уж близко подошли к теоретическому пределу для жидкостных ракетных двигателей (ЖРД). Современные же электроплазменные двигатели создают удельную тягу в 5–6 раз большую. А это очень важно, если учесть, что каждый килограмм груза, выведенного на орбиту, обходится в 20–40 тыс. долларов США.