Читать «Юный техник, 2005 № 08» онлайн - страница 29

Журнал «Юный техник»

Сначала заподозрили, что происходит химическое соединение сердечника снаряда со сталью плиты с выделением тепла. Но никаких продуктов химических реакций обнаружить не удалось. Стало ясно, что энергия берется откуда-то еще. Уж не происходят ли какие-нибудь ядерные процессы в уране? Нет, обстрел броневых плит снарядами с сердечниками из вольфрама и даже стали давал примерно такие же результаты: откуда-то появлялась огромная энергия. Когда же скорость снарядов снижали примерно до 1200 м/с и меньше, эффект исчезал. Плита нагревалась ровно настолько, сколько могла дать ей кинетическая энергия. Тут вспомнили и про одну из загадок астрофизики. Когда на землю падает железоникелевый метеорит со скоростью 700 м/с, то он создает крохотную воронку и сам остается почти целехоньким. Но, если скорость метеорита достигает 3–4 тыс. м/с, образуется громадная воронка, в которой удается найти лишь ничтожные следы метеорита. При этом размеры воронки также не удается объяснить только кинетической энергией небесного тела.

Загадку прояснили в начале 90-х годов прошлого века русские ученые профессор МГТУ Михаил Константинович Марахтанов и его сын, аспирант Калифорнийского университета в Беркли Алексей Марахтанов.

Все металлы имеют кристаллическую структуру, на создание которой затрачивается немалая энергия. Состоит кристалл из отдельных положительно заряженных атомов, расположенных в узлах кристаллической решетки. Между ними, как и между любыми одноименно заряженными телами, действуют силы отталкивания. Казалось бы, атомы должны немедленно разлететься в стороны. Но между ними постоянно находится некоторое количество движущихся электронов. Они выполняют роль клея, удерживающего атомы металла в узлах кристаллической решетки.

Электроны движутся хаотично. Как только один из них уходит со своего места, немедленно находившийся рядом с ним атом металла начинает выходить из узла, но появляется следующий электрон, и атом становится на место.

Если бы каким-то образом удалось вывести из кристалла все электроны, он бы немедленно распался на отдельные атомы, и при этом выделилась бы энергия, затраченная на создание кристалла. Это и происходит при ударе снаряда о броню. Если скорость его достаточно велика, то электроны, скрепляющие атомы кристаллов его сердечника, по инерции вылетают, а атомы под действием электрического отталкивания разлетаются в стороны. Происходит взрыв материала сердечника. А энергия его не меньше, чем энергия взрыва тротила. Скажем в скобках: зная это, можно понять, почему немецкие снаряды из урана вели себя примерно как вольфрамовые — скорость их была невелика. И лишь в 60-х годах достигла нужной величины.

Способность кристаллов металла взрываться возрастает по мере роста их порядкового номера в таблице Менделеева. Наиболее сильно она выражена у урана и вольфрама, наименее — у алюминия. Процесс взрыва кристаллической решетки за счет удара о преграду сегодня имеет лишь сугубо военное применение. Нет сомнения, что его можно использовать и иначе.