Читать «Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики» онлайн - страница 11
Леонард Сасскинд
Вернувшись в Стэнфорд, я рассказал об утверждении Стивена своему другу Тому Бэнксу. И мы с ним тщательно все обдумали. Чтобы получше во всем разобраться, я даже пригласил одного бывшего ученика Стивена приехать в Южную Калифорнию. Мы с большим недоверием относились к утверждению Стивена, но какое-то время сами не могли понять почему. Что такого плохого в потере какого-то количества информации внутри черной дыры? Потом до нас дошло. Потеря информации — это то же самое, что порождение энтропии. А порождение энтропии означает генерацию тепла. Виртуальные черные дыры, существование которых столь вольно допустил Стивен, вели бы к выработке тепла в пустом пространстве. Совместно с еще одним коллегой, Майклом Пескином, мы сделали оценку, основанную на теории Стивена. Оказалось, что если он прав, то пустое пространство за малую долю секунды должно разогреться до тысячи миллиардов миллиардов миллиардов градусов. Хотя я знал, что Стивен ошибается, я не мог обнаружить брешь в его рассуждениях. Возможно, именно это и раздражало меня больше всего.
Последовавшая затем Битва при черной дыре являла собой нечто большее, нежели полемика между физиками. Это была также битва идей или, возможно, битва между фундаментальными принципами. Принципы квантовой механики и общей теории относительности всегда были на ножах друг с другом, и никто не знал, способны ли они сосуществовать. Хокинг — релятивист, верящий прежде всего в эйнштейновский принцип эквивалентности. Мы с ’т Хоофтом — квантовые физики, уверенные, что законы квантовой механики не могут нарушаться без подрыва самих основ физики. В следующих трех главах я опишу диспозицию сторон перед Битвой при черной дыре, изложив основы физики черных дыр, общей теории относительности и квантовой механики.
2
Темная звезда
Горацио, — на небе и земле
Есть многое, что и не снилось даже Науке.
— Уильям Шекспир, Гамлет
Первый намек на что-то подобное черной дыре появился в конце XVIII века, когда великий французский физик Пьер-Симон де Лаплас и английский клирик Джон Митчел высказали одну и ту же замечательную мысль. Все физики тех дней серьезно интересовались астрономией. Все, что было известно о небесных телах, выяснялось благодаря свету, который они испускали или, как в случае с Луной и планетами, отражали. Хотя ко времени Митчела и Лапласа со смерти Исаака Ньютона прошло уже полвека, он все равно оставался самой влиятельной фигурой в физике. Ньютон считал, что свет состоит из крошечных частиц — корпускул, как он их называл, — а раз так, то почему бы свету не испытывать действие гравитации? Лаплас и Митчел задумались, может ли существовать звезда, столь массивная и плотная, что свет не сможет преодолеть ее гравитационное притяжение. Должны ли такие звезды, если они существуют, быть абсолютно темными и потому невидимыми?
Может ли снаряд — камень, пуля или хотя бы элементарная частица — вырваться из гравитационного притяжения Земли? С одной стороны — да, с другой — нет. Гравитационное поле массы нигде не заканчивается; оно тянется бесконечно, становясь все слабее и слабее по мере увеличения расстояния. Так что брошенный вверх снаряд никогда полностью не избавится от земного притяжения. Но если снаряд брошен вверх с достаточно большой скоростью, он будет удаляться вечно, поскольку убывающая гравитация слишком слаба, чтобы развернуть его и притянуть назад к поверхности. В этом смысле снаряд может вырваться из земного тяготения.