Читать «Вертолет, 2004 №2» онлайн - страница 31

Автор неизвестен

Из вышесказанного следует, в частности, несостоятельность предложения разместить КН и КУ на самостоятельных стабилизированных платформах, связав их между собой следящей системой, так как в лучшем случае при этом вклинивается ошибка в дистанционном сопряжении КН и КУ (не менее 2'), которая добавит к «промаху» дополнительно 3–4 м (на дальности 5000 м), что совершенно неприемлемо, так как система перестанет быть высокоточной.

Рис. 2. Принципиальная схема «зеркальной» обзорно-прицельной системы

Рис. 3. Принципиальная схема «платформенной» обзорно-прицельной системы

Таким образом, обзорно-прицельная система для реализации ВТО должна состоять, как минимум, из канала наблюдения и канала управления, оптические оси которых взаимно съюстированы и стабилизированы в инерциальном пространстве.

Для работы в дневное время канал наведения должен включать в себя оптический или телевизионный канал или оба эти канала. Если же система должна работать круглосуточно, в КН обязательно должен входить и тепловизионный датчик. Помимо этого, как правило, в состав обзорноприцельной системы включается лазерный дальномер.

Существуют две принципиально различающиеся конструктивные схемы построения обзорно-прицельных систем. В основе первой лежит гиростабилизированное зеркало, на плоскость которого сведены все необходимые каналы, размещенные неподвижно (рис. 2). Эту систему мы будем впоследствии называть «зеркальной», а вторую, в которой все каналы размещаются на единой стабилизированной платформе — «платформенной» (рис. 3).

Первую группу представляют отечественные приборы «Радуга», «Шквал» и иностранные разработки BEZU, SFIM, АРХ-334 и ряд других. Ко второй группе относятся российские приборы типа ГОЭС, американские системы TADS, М-65, французские Strix, Osiritis, Viviane и ряд других. Рассмотрим особенности обоих вариантов, их преимущества и недостатки.

Рис. 4. Зона обзора обзорно-прицельной системы

Рис. 5. Схема геометрических параметров «зеркальной» системы

D — диаметр светового потока

в в. н — угол места (верх, низ)

β п.л.- угол азимута (право, лево)

Л.В. -линия визирования

L-длина зеркала

L — расстояние до входного отверстия

На — высота входного окна

Вб — ширина входного окна

Нв. н — высота верхней (нижней) части входного окна

m в.л. — проекция ЛВ на плоскость

h в.н. — часть светового потока в плоскости окна

φ — угол падения (отражения)

Δφ в.л. — поворот зеркала относительно нулевого положения (4–5 гр.)

П — «перископичность»

ξ в.н. — предельное значение угла места (верх, низ)

Зоны обзора

Первая задача, которая возлагается на обзорно-прицельную систему (ОПС), — это поиск и обнаружение целей. Для этого ОПС должна иметь максимально возможную зону просмотра в связанной системе координат вертолета. Это позволяет производить разведку местности, не накладывая ограничений на траекторию полета вертолета. Иными словами, ОПС должна обеспечивать перемещение ЛВ по горизонтали и вертикали по командам операторов в широких диапазонах (рис. 4).