Читать «Юный техник, 2009 № 07» онлайн - страница 9

Журнал «Юный техник»

Сбить его было бы очень трудно — за время с момента старта до поражения цели системы защиты не успели бы среагировать.

В ходе программы испытаний было произведено несколько пробных пусков от «Бора-1» до «Бора-5»…

Первые «Боры» вернулись с орбиты оплавленными, но затем советским специалистам удалось отладить теплозащиту на основе графита, и дорога на орбиту для космолета была открыта.

Так выглядел космолет «Бор».

Впрочем, до «звездных войн» дело, к счастью, не дошло. Но это не значит, что ныне интерес к графиту потерян. Им сегодня серьезно занимаются в Государственном НИИ конструкционных материалов. Гордость института — небольшой ромбовидный блок. По словам заместителя директора института, доктора технических наук Н.Ю. Бейлиной, этот блок из искусственного графита не что иное, как чрезвычайно ответственная деталь атомного реактора.

Искусственный графит делают из нефтяного кокса и продукта переработки каменного угля — пека при температуре до 2800 градусов. Получается прочный, плотный материал, изъяном которого до недавних пор считалась хрупкость. Однако теперь научились создавать и гибкие композиты, например, графитофторопласт.

Композитное полотно на основе углеволокна применяют в ракетно-космической технике, из него также делают чрезвычайно легкие, прочные планеры и корпуса парусных яхт. Изготовляют из материалов на основе углерода и эндопротезы, используемые при переломах. Такие протезы хорошо совмещаются с человеческим организмом. Суставы плеча, бедра, позвонки, сердечные клапаны, даже элементы глазных протезов тоже делают на основе углеродного композита.

И это еще не все.

Графен — «сын» графита

Недавно ученые выяснили, что если удалить из графена — слоя графита толщиной в 1–2 атома все примеси, то подвижность электронов в нем побьет все рекорды: она будет в 100 раз больше, чем в кремнии, в 20 раз больше, чем в арсениде галлия GaAs), и даже выше, чем в абсолютном рекордсмене среди всех полупроводников — антимониде индия (InSb). А это значит, что из графена можно делать сверхбыстрые процессоры и другую электронику, работающую даже в терагерцовом диапазоне частот — малодоступной пока области электромагнитных волн, которая таит в себе немало открытий и важных практических приложений.

Расчеты смогли подтвердить на практике исследователи из Рутгерского университета (США). Ученые под руководством профессора Мэниша Чховеллы разработали относительно простой и дешевый способ изготовления из графена тончайших прозрачных пленок. Они уверяют, что могут осадить графен практически на любую подложку, включая гибкую полимерную, причем в виде лент практически неограниченных размеров.

Делается это так. Сначала специалисты смешивают с водой графитовые чешуйки. Затем в полученную суспензию добавляют серную или азотную кислоту. Атомы кислорода, встраиваясь между отдельными графеновыми слоями, окисляют их, способствуя разделению. В результате в воде образуются графеновые листочки. Эту взвесь фильтруют через мембрану с порами диаметром 25 нм. Вода проходит сквозь поры, а графеновые чешуйки задерживаются. Затем мембрану перекладывают на подложку вниз стороной, покрытой графеновыми чешуйками, и растворяют в ацетоне. Оставшуюся пленку выдерживают в гидрозине для преобразования графенового оксида в графен. Толщину пленки легко регулировать, изменяя объем используемой суспензии: так, при объеме 20 мл образуется пленка толщиной 1–2 нм, при 80 мл — 3–5 нм.