Читать «Черная маска из Аль-Джебры» онлайн - страница 63

Владимир Артурович Левшин

— Время, за которое все три экскаватора выроют весь котлован, — предложил я.

— Верно. Давайте дальше.

Тут я, как назло, запнулся. Ни туда ни сюда.

— Ладно уж, — сказал Составитель, — придется помочь. Выясним, какую часть котлована выроет каждый экскаватор за один час? Для этого условимся, что объем всего котлована равен единице.

— И что из этого следует? — спросил Сева.

— А из этого следует, — догадался я, — что первый экскаватор за час выроет одну четверть котлована, второй — одну треть, третий — одну двенадцатую.

— Ну конечно! — обрадовался Составитель. — Какую же часть они выроют за час, если будут работать все вместе?

На этот раз ответил Сева:

— Вот какую: 1/4 + 1/3 + 1/12

— Молодец! А за икс часов?

— А за икс часов они выроют в икс раз больше, — сказала Таня. — Это и будет весь котлован, объем которого мы приняли за единицу.

Так у нас получилось уравнение: х(1/4 + 1/3 + 1/12) = 1.

Ну, а решить такое уравнение было уже совсем легко: 8/12 х = 1.

Значит, Икс равен двенадцати восьмым, или х = 3/2.

Выходит, что три экскаватора, работая вместе, выроют котлован за полтора часа.

Неловко об этом говорить, но мне было очень приятно, когда маска с Икса упала и он стал нас благодарить.

Карликан заторопился к своим экскаваторам, а Составитель тут же предложил решить еще одну задачу, точно такую же, но… Что это за «но», ты сейчас поймешь.

— Признаться, надоели мне такие уравнения, — сказал Составитель, — слишком часто приходится их составлять. Везде идут стройки, везде роют котлованы. Пора бы уж сразу найти один ответ на все подобные вопросы. Ведь мы как-никак живем в Аль-Джебре…

— И потому должны упрощать и обобщать, — докончил Сева.

— Уж конечно! Не хотите ли вместе со мной вывести такое единое решение?

Мы молча кивнули, и Составитель начал:

— Так как экскаваторы бывают разных мощностей, то пусть первый из них роет котлован за а часов, второй — за b часов, ну а третий, допустим, за с часов. Спрашивается, за сколько часов выроют они котлован, если будут работать вместе?

— По-моему, — сказал я, — решение должно быть таким же, как и в предыдущей задаче. Только та задача была в числах, а мы ее изобразим буквами. Снова примем за Икс число часов, необходимое, чтобы закончить работу, а всю работу — за единицу.

— Так-так-так, — подбадривал Составитель.

Теперь рассуждала Таня:

— Очевидно, первый экскаватор совершит за час 1/а часть работы. Это, наверное, читается так: одну атую часть работы?

— Хорошо, хорошо.

— Тогда второй, — сказал Сева, — за час совершит одну бэтую: — 1/b, а третий одну цэтую: 1/c часть работы. А все вместе они выроют за час сумму этих дробей; 1/a + 1/b + 1/c.

Теперь нетрудно составить уравнение, — ведь за икс часов они выполняют работу в икс раз большую: x(1/a + 1/b + 1/c).

И все это должно быть равно единице: x(1/a + 1/b + 1/c) = 1.

Вот вы и составили уравнение, — похвалил Составитель.

— Теперь приведем подобные, — сказал Сева. Вспомнил, наверное, как он недавно оплошал.