Читать «Генетическая одиссея человека» онлайн - страница 24
Спенсер Уэллс
«Но подождите, — скажете вы, — да разве эти сломанные и соединенные вновь хромосомы не такие, какими были прежние? Предполагалось, что они должны быть копиями!» Дело в том, что они не точные копии друг друга, а имеют отличия во многих местах по всей длине. Это копии копий, сделанные недобросовестным копировальным аппаратом, постоянно допускающим некоторое количество случайных ошибок при копировании хромосом. Эти ошибки и есть мутации, о которых мы уже упоминали ранее, а различия между парными хромосомами и есть полиморфизмы. Полиморфизмы обнаруживаются приблизительно через каждые 1000 нуклеотидов хромосомы. Таким образом, когда происходит рекомбинация, новые хромосомы отличаются от родительских.
Эволюционный смысл рекомбинации заключается в том, чтобы разрушить наборы полиморфизмов, соединенных друг с другом на одном участке ДНК. И хотя этот механизм, создающий разнообразие, в эволюционном плане отличная штука, он очень усложняет жизнь молекулярным биологам, желающим прочитать книгу об истории человеческого генома. Рекомбинация позволяет каждому полиморфизму на хромосоме вести себя независимо от других. Со временем полиморфизмы рекомбинируют много раз, и после сотен или тысяч поколений тип полиморфизмов, существовавший у общего предка, полностью утрачивается. Хромосомы потомков полностью перетасованы, и от первоначальной «колоды» не остается и следа. И это плохо для эволюционных исследований, так как, не имея возможности сказать что-либо о предке, мы не можем применять к полиморфизмам принцип «бритвы Оккама» и, следовательно, не представляем, сколько изменений претерпели в действительности перетасованные хромосомы. В настоящее время все наши расчеты молекулярных часов базируются на скорости появления новых полиморфизмов посредством мутаций. Из-за рекомбинации кажется, будто произошли мутации, в то время как их на самом деле не было, и из-за этого мы можем переоценить время, прошедшее с момента отделения от общего предка.
В начале 1980-х годов Уилсона и некоторых других генетиков посетила научная догадка, что если взглянуть на маленькие клеточные структуры, называемые митохондриями, то можно найти способ перехитрить перетасовку хромосом. Интересно, что митохондрия имеет свой собственный геном, и кроме ядра это единственная клеточная структура, у которой он есть. Дело в том, что по существу это эволюционный след, оставшийся с того времени, когда миллиарды лет назад образовались сложные клетки. Митохондрия — это то, что осталось от древней бактерии, проглоченной одним из наших одноклеточных предшественников. Позднее она оказалась пригодной для генерирования энергии в клетке, и теперь служит в качестве внутриклеточной силовой станции, хотя и начала свою жизнь как паразит. К счастью, митохондриальный геном существует всего в одной копии (как и бактериальный геном), а это означает, что он не может рекомбинировать. Кроме того, оказывается, что вместо одного полиморфизма приблизительно на 1000 нуклеотидов, он имеет один на 100. Чтобы провести эволюционное сравнение, мы хотели бы иметь в распоряжении столько полиморфизмов, сколько возможно, так как каждый полиморфизм увеличивает нашу способность различать индивидуумов. Вдумайтесь: если бы мы взяли только один полиморфизм с двумя различающимися формами А и Б, мы могли бы рассортировать всех на две группы — вариант А и вариант Б. С другой стороны, если взять 10 полиморфизмов, каждый из которых имеет два варианта, можно добиться лучшей разрешающей способности, так как вероятность того, что множество индивидуумов будет иметь одинаковый набор вариантов, намного меньше. Другими словами, чем больше полиморфизмов мы имеем, тем выше наши шансы сделать правильные выводы о родственных отношениях между исследуемыми людьми. Поскольку полиморфизмов митохондриальной ДНК (мтДНК) в десять раз больше, чем в остальной части нашего генома, к ней стоит приглядеться получше.