Читать «История лазера» онлайн - страница 248
Марио Бертолотти
В 1960-х гг. Филлипс со своими сотрудниками использовал этот принцип для замедления пучка атомов натрия, а в 1985 г. они захватили охлажденный таким способом пучок с помощью магнитного поля.
В 1985 г. Чу со своими сотрудниками добился успеха в охлаждении атомного газа, используя шесть лазерных пучков, сформированных в пары с противоположными направлениями и при ортогональном расположении этих пар. В такой конфигурации каждый атом двигался в произвольном направлении, замедляя скорость своего движения.
Тремя годами позднее Коен-Тануджи открыл способ охлаждать атомы до температур, невозможными с помощью этих простых методов, используя процессы квантовой интерференции в лазерных пучках, распространяющихся навстречу друг другу. В 1995 г. он сумел охладить газ из атомов гелия до фантастически низкой температуры, только на 4 миллионных долей градуса выше абсолютного нуля.
Методики охлаждения и захвата нейтральных атомов позволили продемонстрировать конденсацию Бозе—Эйнштейна и открыли возможность создания часов с невообразимой точностью хода, сверхпрецизионные методы измерения гравитации и др.
Конденсация Бозе-Эйнштейна
Несомненно, одним из наиболее впечатляемых результатов современной физики было полученное в 1995 г. экспериментальное доказательство конденсации Бозе—Эйнштейна. В 1924 г. Эйнштейн предсказал существование особого состояния материи, в котором все атомы с определенными свойствами, т.н. бозоны (со спинами, кратными h), могут оставаться с совершенно одинаковыми квантовыми свойствами. В 1995 г. В 1995 г. Эрик Корнел (г. р. 1962) из Национального Института стандартов и технологий и Карл Виман (г. р. 1951) из университета Колорадо сумели охладить с помощью лазерного пучка атомы рубидия и захватить их в магнитную ловушку. Затем было произведено дополнительное охлаждение с помощью метода, называемого испарительным охлаждением, действующим так же, как охлаждается чашка чая, т.е. позволяя улетучиваться более горячим атомам.
Когда достигается очень низкая температура, атомы в новом состоянии начинают двигаться вместе с одной и той же скоростью и в одном и том же направлении, вместо того, чтобы двигаться произвольно, как это имеет место для обычного газа. Атомы теряют свою индивидуальность и теперь становятся одиночной коллективной единицей. Их организованная конфигурация приводит к необычным свойствам. Конденсация Бозе—Эйнштейна получалась в облаке атомов рубидия-87, которые охлаждались до ~ 170 нК. Самый полный образец содержал около 2000 атомов, которые в течение более, чем 15 сек находились в одиночном квантовом состоянии. Вольфганг Кеттерль (г. р. 1957) и его группа из MIT (США) сумели получить конденсат натрия-23, содержащий в сто раз больше атомов. Корнел, Кеттерль и Виман получили в 2001 г. Нобелевскую премию по физике «за достижение конденсации Бозе-Эйнштейна в разряженных газах и за пионерские, фундаментальные изучения свойств этого конденсата». С помощью конденсата Бозе-Эйнштейна возможно изучить некоторые аспекты квантовой механики и, может быть, лучше понять явление сверхпроводимости (свойство некоторых материалов совершенно терять электрическое сопротивление). Происхождение Вселенной, также связывают в некоторых теориях с конденсацией Бозе-Эйнштейна.