Читать «Цифровой журнал «Компьютерра» № 172» онлайн - страница 7

Коллектив авторов

Обсерватория «Гершель» работала в дальнем инфракрасном (ИК) и субмиллиметровом диапазонах, то есть способна была принимать свет с длинами волн от 55 до 672 микрон. Этот диапазон с Земли либо не виден совсем, либо виден очень плохо (в нескольких окнах прозрачности), что обидно, ибо именно на эти длины волн приходится максимум излучения холодного (десятки кельвинов) межзвёздного и околозвёздного вещества, в частности максимум теплового излучения практически всей космической пыли. Кроме того, субмиллиметровый диапазон богат спектральными линиями, принадлежащими атомам, ионам и многочисленным молекулам, также пребывающим в межзвёздном и околозвёздном пространстве.

О достижениях «Гершеля» сказано в последние дни много, и я это пересказывать не буду: что и говорить, обсерватория замечательная и результаты уникальные. Напишу лучше о проблеме, которую «Гершель» не только не помог решить, но, скорее, даже усугубил. Это проблема кислорода, третьего по распространённости элемента во Вселенной. Точнее, он третий по содержанию в звёздах, но, поскольку звёзды образуются из межзвёздного вещества, логично предположить, что и в нём кислорода должно быть много. Остаётся понять, в какой именно форме, в составе какого вещества существует межзвёздный кислород.

Во времена зарождения астрохимии, то есть в 1970-е годы, предполагалось, что основным резервуаром кислорода в межзвёздной среде (МЗС) являются молекулы воды и O2, то есть те, что мы вдыхаем и пьём на Земле. Цепочка реакций, ведущих к в этим соединениям, очень проста. Сначала космические лучи ионизуют молекулу самого распространённого элемента — водорода, в результате чего возникает ион H3+. Ион H3+ вступает в реакцию со свободным атомом кислорода, порождая ион OH+. Этот ион реагирует с молекулой водорода, превращаясь в H2O+, ион H2O+ тоже реагирует с молекулой водорода, превращаясь в H3O+, а этот последний рекомбинирует с электроном, попутно разваливаясь с образованием молекулы воды или гидроксила (OH). Гидроксил, сталкиваясь со свободным атомом кислорода, превращается в молекулу кислорода и свободный атом водорода. Я описываю эту цепочку детально, чтобы показать: химия кислорода проста и предсказуема, представляя собой, по сути, быструю «перекачку» свободных атомов кислорода в молекулы H2O и O2, итоговое относительное содержание которых по количеству атомов должно быть сопоставимо с полным содержанием кислорода, порядка 10-5-10-4.

Проверить этот вывод в наземных наблюдениях сложно, так как сильные линии воды и O2, попадающие в субмиллиметровый диапазон, не доходят до поверхности Земли, поскольку поглощаются этими же молекулами в земной атмосфере. Наблюдатели пытались обойти эту проблему при помощи различных ухищрений, например, искали излучение изотопомера 16O18O. Изотопомеры, то есть молекулы, в которых один или несколько атомов замещены менее распространёнными изотопами, зачастую обладают линиями, отсутствующими у варианта с основными изотопами, которые легче наблюдать. Линии молекулы кислорода искали также в далёких галактиках, надеясь, что красное смещение сдвинет их в окна прозрачности земной атмосферы. Но наземные попытки оказались тщетными, и это уже означало, что о содержании молекулярного кислорода выше 10-5 речи не идёт.