Читать «Эволюция Вселенной и происхождение жизни» онлайн - страница 91

Пекка Теерикор

Рис. 12.5. Густав Роберт Кирхгоф (1824–1887) отождествил темные линии в спектре Солнца со спектральными линиями земных химических элементов.

Долгое время Кирхгоф в сотрудничестве с Бунзеном проводил свои успешные исследования. Бунзен начал анализ химического состава образцов по цвету, который они придавали бесцветному огню его знаменитой горелки. Кирхгоф решил, что будет лучше использовать спектроскоп для более точного измерения длины волны (цвета). Когда это удалось осуществить, все линии Фраунгофера были отождествлены.

Оказалось, что характерный цвет пламени обусловлен яркими спектральными линиями разной длины волны у разных элементов. Каждый элемент имеет собственный характерный признак в виде спектральных линий, которые появляются, когда образец нагревается до такой температуры, чтобы он превратился в горячий газ. По спектральным линиям можно определить химический состав исследуемого образца. В письме, датированном 1859 годом, Бунзен писал: «Сейчас вместе с Кирхгофом мы проводим исследования, которые не дают нам уснуть. Кирхгоф сделал совершенно неожиданное открытие. Он нашел причину возникновения темных линий в спектре Солнца, и он способен воспроизвести эти линии… в непрерывном спектре пламени на тех же местах, что и линии Фраунгофера. Это открывает путь к определению химического состава Солнца и неподвижных звезд…».

На самом деле еще в 1849 году Жан Фуко (1819–1868) в Париже обнаружил совпадение между лабораторными спектральными линиями и линиями в спектре Солнца. Но по каким-то причинам его открытие оказалось забыто. Ничего не зная о работе Фуко, Бунзен и Кирхгоф повторили и усовершенствовали его опыты.

Кирхгоф обобщил свои результаты в виде так называемых законов Кирхгофа (см. также рис. 12.6).

Рис. 12.6. Свет горячего источника, поступающий в спектроскоп, показывает непрерывный спектр, в то время как свет, прошедший сквозь газ, демонстрирует темные линии поглощения. Но если посмотреть на спектр самого газа, то в нем видны яркие эмиссионные линии. Изучая спектры звезд и галактик, астрономы определяют их температуру и химический состав, а также их массы, скорости и расстояния до них.

I закон Кирхгофа: Горячий плотный газ и твердые тела излучают непрерывный спектр. Спектр называют непрерывным, если в нем представлены все цвета радуги и поэтому в нем нет темных линий.

II закон Кирхгофа: Разреженные (имеющие низкую плотность) газы излучают спектр состоящий из ярких линий. Яркие линии с определенными длинами волн называют также эмиссионными линиями.

Как уже говорилось, спектр с эмиссионными линиями возникает от горячего, разреженного газа в пламени бунзеновской горелки, наблюдаемом на темном фоне. Однако если за горелкой поставить источник света и пустить интенсивный луч света сквозь газ этого пламени, то можно предположить, что свет горелки и свет, идущий от источника за горелкой, будут складываться. Если же свет, приходящий из-за горелки, имеет непрерывный спектр, то можно ожидать, что яркие линии пламени горелки будут налагаться на непрерывный спектр. Но Кирхгоф этого не увидел. Наоборот, он видел непрерывный спектр с темными линиями на тех местах, где должны были быть эмиссионные линии. И это он зафиксировал в своем третьем законе.