Читать «Эволюция Вселенной и происхождение жизни» онлайн - страница 297

Пекка Теерикор

Теперь расскажем о проблемах полимеризации. На рис. 30.5 показаны формы субъединиц нуклеозидов и их фосфодиэфирные связи в РНК-полимерах. На этом рисунке изображены и альтернативные строительные блоки, которые не могут быть использованы в РНК-полимерах. Как уже говорилось, РНК-нуклеотиды формируются из оснований — аденина, гуанина, цитозина и урацила, соединенных с сахаром рибозой (см. рис. 28.4 и 28.5). Соседние сахара рибозы должны связываться друг с другом через фосфоризирующие связи между 5'-углеродом одной рибозы с 3'-углеродом предыдущей. Фосфоризирующая связь формируется через фосфатную часть, содержащую фосфор (Р) и кислород (О). Для этого нуклеозиды должны сначала связать фосфатную группу (см. рис. 28.4) или фосфоризироваться своим 5'-углеродом, чтобы затем превратиться в нуклеотиды. На молодой Земле это было затруднительно, так как растворимых фосфатов почти не имелось. Возможно, небольшая часть фосфатов образовалась из неорганических минералов фосфата кальция (гидроксилапатит), хотя они очень плохо растворяются в воде. Возможно также, что фосфаты появились из линейных полифосфатов вулканического происхождения или продуктов их распада. Даже если эти источники обеспечивали нужное количество растворимых фосфатов, то фосфоризация нуклеозидов должна была быть очень затруднена, ведь в лабораторных условиях она может быть завершена только при наличии мочевины, хлористого аммония и тепла. Далее, для полимеризации нуклеотидов нужно еще, чтобы они были активированы какой-нибудь высокоэнергичной связью (например, связью с аналогом основания или аминокислотой) в положении 5', чтобы обеспечить энергией реакции связи между нуклеотидами.

Рис. 30.5. Полимеры, сформированные фосфодиэфирными связями (содержащими фосфор и кислород) между 5'- и 3'-углеродами β-D-нуклеотидов. Нуклеозиды образованы из оснований аденина, гуанина цитозина, урацила и четырехуглеродной циклической формы рибозы в D-ориентации. Перепечатано с разрешения Macmillan Publishers Ltd; G. F. Joyce: The Antiquity ofRNAbased evolution. Nature 418:214, copyright (2002).

Еще одна трудность полимеризации рибонуклеотидов состоит в том, что в смеси мономеров могут происходить различные реакции. Чтобы сформировать функциональный полимер, фосфоризирующие соединения должны образовываться между 5'- и 3'-углеродами соседних нуклеотидов. Но кольцо рибозы имеет реакционноспособные группы ОН у углеродов в положениях 5', 3' и 2. В добиологических условиях между всеми этими группами могли протекать реакции, и в результате внутримолекулярных реакций между ОН-группами в положениях 2' и 3' могли формироваться циклические соединения. Более того, молекулы фосфатов могли создать разные полифосфатные связи между разными углеродами. Все эти разнообразные связи могли привести в тупик дальнейшую полимеризацию.

По мнению Джеральда Джойса (Исследовательский институт Скрипса, Ла-Хойя, Калифорния), ведущего специалиста по добиологической химии РНК, отсутствие специфичности является основной проблемой добиологических реакций. Спонтанные реакции, начавшиеся с синильной кислоты или с цианистого ацетилена, цианита и мочевины, могут дать разные аналоги оснований. Но из всех них только пурины аденин и гуанин, а также пиримидины цитозин и урацил природа использовала для формирования функциональных нуклеозидов. В составе нуклеозидов в добиологических условиях существующие основания могли быть связаны с составляющими рибозы, причем с одинаковым успехом как в а-, так и в р-конфигурациях, а фураноза (четырехуглеродное кольцо) рибозы могла сформироваться как в L-, так и в D-изоформах (лево- и правовращающих плоскость поляризации света, как описано в главе 28). Сахар рибоза также мог сформироваться в виде пятиуглеродного кольца (пираноза) путем соединения 5'- и 1'-углеродов. Добиологические реакции полимеризации между всеми различными аналогами и изоформами нуклеотидов могли привести к большому разнообразию фосфатных соединений разных атомов углерода рибозы. В целом эти реакции могли легко использовать разные варианты пуринов и пиримидинов, связываясь с которыми разные производные разных циклических сахаров формируют L- и D-конфигурации. Эти совершенно случайные аналоги нуклеозидов могут затем фосфорилироваться на разных позициях углерода, и потом опять случайно фосфорилированные аналоги нуклеотидов могли связаться друг с другом разными способами, что показано на рис. 30.5. Ни один из этих альтернативных вариантов не производит функциональноактивные РНК-полимеры.