Читать «Эволюция Вселенной и происхождение жизни» онлайн - страница 243

Пекка Теерикор

Вариации блеска легли в основу теоретической модели странного объекта OJ 287 (рис. 26.7). Судя по всему, этот источник состоит из двух сверхмассивных черных дыр, обращающихся друг вокруг друга. Большая часть излучения связана с аккреционным диском вокруг большей черной дыры и с ближайшей с нему областью. Радиоизлучение генерируется гораздо дальше — в джетах. Орбитальный период черных дыр составляет 9 лет, а их массы равны 0,1 и 18 млрд масс Солнца.

Еще один способ исследования структуры квазаров связан с увеличением угловой разрешающей способности телескопов. Космический телескоп «Хаббл», не страдающий от искажения изображений в атмосфере, достиг разрешения в 0,1". Новое поколение больших оптических телескопов, таких как «Очень большой телескоп» (VLT) Европейской южной обсерватории (ESO) в Чили, смог с поверхности Земли достичь примерно такого же разрешения (хотя обычно наша атмосфера размазывает изображение звезды в пятнышко размером в 1" или даже больше).

Наилучшее разрешение достигнуто сейчас в радиоастрономии. Мы помним, что вначале основной проблемой радиоастрономии было именно низкое угловое разрешение. Впрочем, и сейчас предельное разрешение радиотелескопа с одной тарелкой не превышает 1 минуты дуги. В этом смысле у него нет преимуществ перед человеческим глазом. Но если использовать много радиотелескопов и суммировать их сигналы, то можно добиться прекрасного разрешения. При этом, чем дальше друг от друга располагаются тарелки, тем лучше. Например, если радиотелескоп с 15-метровой тарелкой разрешает два радиоисточника, разделенные на небе углом 300", то система из двух таких телескопов, антенны которых разнесены на 300 х 15 м = 4,5 км, может достичь разрешения в 1".

Рис. 26.7. (а) Модель сильно переменного квазара OJ287, созданная в обсерватории Туорла. Показаны центральная черная дыра, аккреционный диск и черная дыра-спутник. (б) На кривой блеска видны периодические всплески излучения.

В 1972 году в Кембриджском университете группа Райла создала такой радиотелескоп, состоящий из восьми тарелок. Это был первый составной радиотелескоп, давший столь же четкое изображение, как у оптического телескопа. Затем были построены интерферометрические системы MERLIN Манчестерского университета с базой (максимальным расстоянием между антеннами) 217 км и VLA Национальной радиоастрономической обсерватории (NRAO) в Нью-Мексико с базой 36 км.

После этого прогресс ускорился. Даже далекие друг от друга радиотелескопы стали соединять между собой, так что наибольшее расстояние между ними почти достигло диаметра Земли. А поскольку это в 2000 раз превышает расстояние между телескопами кембриджской системы, то и предельное разрешение такой глобальной системы стало менее одной миллисекунды дуги (0,001"). Использование далеко разнесенных телескопов в одной системе называется радиоинтерферометрией со сверхдлинными базами (РСДБ), по-английски: Very Long Baseline Interferometry (VLBI). Для проведения таких наблюдений обсерватории в разных частях мира наводят свои телескопы в одно и то же время на один и тот же источник. Для увеличения разрешения к сети VLBI присоединяются и многие другие радиотелескопы. Например, 14-метровый телескоп в Финляндии часть времени работает как член Европейской системы VLBI. В США есть собственная система VLBA (Very Long Baseline Array, Сеть с очень длинной базой), которая все время занята интерферометрическими наблюдениями. Антенны американской сети VLBA размещены по всей стране — от Гавайских островов и Аляски до самых восточных штатов, включая остров Пуэрто-Рико. А в чилийской высокогорной пустыне Атакама сейчас силами европейских (ESO) и американских (NRAO) астрономов сооружается во многих отношениях самая мощная из подобных систем — ALMA (Atacama Large Millimeter/submillimeter Array, Атакамская большая сеть миллиметрового и субмиллиметрового диапазонов).