Читать «Эволюция Вселенной и происхождение жизни» онлайн - страница 240

Пекка Теерикор

Вскоре обнаружились новые радиозвезды. Их назвали квазарами (quasi-stellar objects), поскольку выглядят они как звезды, но в действительности эквивалентны миллионам звезд. Кроме того, их блеск часто меняется за короткое время, например от одной ночи к другой. А скорость изменения говорит нам о размере источника. За сутки свет проходит расстояние в одни световые сутки, что составляет около 200 астрономических единиц, или чуть больше размера Солнечной системы. Источник, который становится значительно ярче за одни сутки, не может быть больше этого размера. Ведь чтобы он смог изменить свой блеск всего за сутки, он должен за это время перестроить все излучающие поверхности на новый уровень блеска. А такую перестройку невозможно произвести со скоростью выше скорости света. Если же перестройка происходит медленнее, то квазар может быть существенно меньше Солнечной системы. Таким образом, в квазаре размером не больше Солнечной системы выделяется больше энергии, чем во всей галактике диаметром 100 000 световых лет!

Аллан Сэндидж открыл также множество объектов, похожих на квазары, но не испускающих заметного радиоизлучения. Фактически таких «радиотихих» квазаров примерно в десять раз больше, чем «радиогромких». Сегодня в каталогах числятся десятки тысяч квазаров; на небе их значительно больше, чем видимых звезд, но все они слишком тусклые для невооруженного глаза. А полное число квазаров превышает миллионы.

Проблема красного смещения.

В некоторый момент у вас могло зародиться сомнение: а верна ли вся эта цепочка рассуждений? Что, если расстояния до квазаров определены неправильно? Тогда светимость квазаров не будет такой большой. Расстояния до квазаров вычислены на основании красного смещения линий в их спектрах и с использованием закона Хаббла. А не может ли быть другой причины для появления красного смещения в спектре, кроме сдвига, обусловленного расширением Вселенной?

Чем больше длина волны излучения, тем меньше частота колебаний. А что, если по какой-то причине колебания атомов в квазарах замедляются и поэтому спектральные линии сдвигаются в длинноволновую сторону? В принципе, это возможно, если пространство-время в области излучения сильно искривлено, например вблизи черной дыры. С точки зрения внешнего наблюдателя, в такой области течение времени и частота колебаний кажутся замедленными. Специально проведенные исследования на предмет возникновения красного смещения в сильных гравитационных полях показали, что другие особенности спектра, помимо красного смещения, не согласуются с таким предположением. Затем исследователи обратились к так называемым механизмам аномального красного смещения. В лабораторных опытах такого не наблюдается, но есть гипотеза, что это может быть в необычных условиях квазаров. Впрочем, до сих пор свидетельства этого в целом не выглядят настолько убедительными, чтобы заставить изменить фундаментальную физическую теорию.

И радиогалактики, и квазары выделяют огромную энергию. Сходство между этими двумя классами объектов стало еще более очевидным, когда обнаружилось, что радиоизлучение может исходить с обеих сторон от квазара, в дополнение к излучению самого квазара. Если квазары и радиогалактики наблюдать только в радиодиапазоне, то они очень похожи. У радиогалактик центр, или галактическое ядро, соответствует квазару. Это наводит на мысль, что квазары — это ядра галактик. От обычных ядер галактик они отличаются своим колоссальным блеском: квазары такие яркие, что в их сиянии не видны окружающие звезды. Это удалось прямо подтвердить, зарегистрировав свет, излучаемый звездами самой галактики, внутри которой находится квазар. Одной из первых стала галактика, содержащая квазар 3С 273 (рис. 26.6).