Читать «Эволюция Вселенной и происхождение жизни» онлайн - страница 226

Пекка Теерикор

Развивая эту идею, Яков Борисович Зельдович в конце 1960-х годов предположил, что космический вакуум молодой Вселенной был идентичен квантовомеханическому вакууму, открытому Полем Дираком из Кембриджского университета в 1927 году. Квантовый вакуум — это также не пустота, а поле с так называемой нулевой энергией — следствие квантовой природы частиц и полей. Эти вопросы столь фундаментальны и трудны для понимания, что, несмотря на усилия многих ученых, предпринятые в последние десятилетия, предположение Зельдовича не удалось ни доказать, ни опровергнуть.

Вакуум Глинера возродился в космологии современной Вселенной в виде так называемой темной энергии. Это не гипотетический первичный вакуум, а реальный вакуум, обнаруженный при космологических наблюдениях. Темная энергия невидима и проявляет себя только антигравитационным влиянием на движение галактик. Ее макроскопические свойства как среды известны благодаря Глинеру, но ее внутренняя микроскопическая структура до сих пор совершенно загадочна.

Как было рассказано в главе 23, плотность темной энергии впервые измерили на очень больших расстояниях в миллиарды световых лет, используя сверхновые как стандартные свечи. Но похоже, что ее влияние сказывается и на меньших расстояниях в несколько миллионов световых лет, в окрестностях Галактики. Это выяснила международная группа, включающая некоторых авторов этой книги. В обоих случаях хаббловский поток расширения служит естественным инструментом для обнаружения силы отталкивания темной энергии. Фактически гравитация массы Местной группы и антигравитация темной энергии компенсируют друг друга в удивительной близости от нас — недалеко от границы Местной группы, на расстоянии, всего лишь примерно вдвое превышающем расстояние до галактики Андромеда! По движению галактик на таких расстояниях определена «локальная» плотность темной энергии, которая оказалась близкой к «общей» ее плотности или даже в точности равной ей. Это говорит об удивительном факте: антигравитация Эйнштейна действительно является вездесущим явлением во Вселенной, таким же, как гравитация Ньютона.

Самое начало.

В эпоху Античности Платон утверждал, что время появилось вместе с небесами (или пространством). С тех пор мы прошли длинный путь, но постоянно возвращаемся к фундаментальному вопросу: откуда все взялось и как это все начиналось? Вселенная, которую мы видим вокруг себя, каким-то образом возникла в Большом взрыве, но мы не знаем как. Хотя здравый смысл подсказывает нам, что бесплатных обедов не бывает, но все же: если вакуум может самопроизвольно заполнять себя частицами, хотя бы и короткоживущими, то почему вся Вселенная не могла возникнуть из ничего? В конце концов, почему бы и не быть бесплатному обеду, и не только в виде еды, но и в форме целого материального мира?

Такие идеи теоретики обсуждают в рамках квантовой космологии. Когда Вселенная была очень молодой, даже моложе, чем упомянутые ранее 10-32 секунды после Большого взрыва, тогда для Вселенной как целого действовал принцип неопределенности Гейзенберга. Квантовые эффекты становятся доминирующими, когда мы уходим в прошлое к так называемому времени Планка, 10-43 секунды после Большого взрыва. В эту эпоху само понятие времени становится таким запутанным, что не имеет смысла говорить о более ранних моментах времени. Соответственно и у энергии возникает такая гигантская неопределенность, что Вселенная могла бы возникнуть «из ничего». Быть может, великий принцип Гейзенберга откроет перед нами возможность хотя бы в принципе понять, как пространство и время родились 14 млрд лет назад в их особом состоянии, из которого они эволюционировали в то, что мы сегодня имеем. Детали всего этого пока известны очень плохо.