Читать «Эволюция Вселенной и происхождение жизни» онлайн - страница 141

Пекка Теерикор

Если в ядре нет электронов, то как быть с бета-излучением, когда из ядер вылетают электроны? Это объяснил блестящий итальянский физик Энрико Ферми всего через год после открытия нейтрона (рис. 18.1).

Рис. 18.1. Энрико Ферми (1901–1954) внес значительный вклад в ядерную физику.

Ферми предположил, что внутри атомного ядра действует еще и другая ядерная сила, названная слабой силой. Она приводит сначала к рождению электрона, а затем к его выбросу из ядра; при этом нейтрон превращается в протон. Мы поймем этот процесс лучше, когда познакомимся с внутренней структурой нейтрона и протона.

Теория Ферми замечательна еще и тем, что она предсказала существование новой элементарной частицы — нейтрино. На этот «маленький нейтрончик» не действуют ни электромагнитная сила, ни сильное ядерное взаимодействие. Его единственная связь с внешним миром осуществляется посредством слабой силы. Область действия слабой силы очень мала — всего 1 % диаметра протона, а по своему усилию она в 100 000 раз уступает сильному ядерному взаимодействию. Так что нейтрино должно очень тесно приблизиться к своему соседу, чтобы они почувствовали влияние друг друга. Поэтому вначале о существовании нейтрино догадались косвенно, заметив странную потерю энергии при бета-распаде. Вольфганг Паули понял, что потерянная энергия ускользает в виде неуловимых частиц. Нейтрино обычного типа имеет массу менее 10-4 массы электрона; существует и другие виды нейтрино (мы с ними познакомимся), массы которых еще меньше.

Для нейтрино столкновение с другими частицами настолько маловероятно, что оно может свободно пройти сквозь свинцовую стену толщиной в световые годы! Только при огромном количестве нейтрино некоторые из них удается захватить приборами. Впервые в 1955 году нейтрино было зарегистрировано вблизи ядерного реактора в Саванна-Ривер (США). За последние десятилетия были обнаружены нейтрино из «термоядерного реактора» в центре Солнца и из других астрономических источников. Считается, что нейтрино — одни из самых многочисленных частиц во Вселенной, но их очень трудно наблюдать.

Всего лишь через день после того, как Чедвик послал свою статью об открытии нейтрона в журнал Nature, другой журнал, Physical Review, получил известие о втором важнейшем открытии 1932 года, сделанном группой ученых из Колумбийского университета (Нью-Йорк) под руководством химика, физика и астронома Гарольда Юри (1893–1981).

Вспомним объяснение странного атомного веса хлора — 35,46, лежащее почти посередине между двумя целыми числами. В природе существует два вида хлора, два «изотопа», с весами 35 и 37. Вообще, у большинства химических элементов есть по нескольку изотопов. Всего химических элементов известно немногим более ста, а число изотопов превышает 2000, хотя стабильны из них только 280. В ядре хлора 17 протонов соединяются с 18 или 20 нейтронами. Таким образом, атомное число, определяющее химические свойства, в обоих случаях равно 17, но атомные веса различаются: 17 + 18 и 17 + 20; кроме того, существуют редкие изотопы хлора: 17 + 19 = 36 и 17 + 23 = 40.