Читать «Планета вирусов» онлайн - страница 20
Карл Циммер
Скептики говорили, что даже если удастся выработать эффективную фаготерапию, то эволюция вскоре сделает ее бесполезной. В 40-х годах XX века микробиологи Сальвадор Лурия (Salvador Luria) и Макс Делбрук (Max Delbruck) наблюдали рост невосприимчивости бактерий к фагам. Когда они подсадили в посуду к кишечной палочке фагов, то большинство бактерий погибло, однако некоторым удалось выжить, и они стали началом для новых колоний. Дальнейшие исследования выявили, что эти выжившие несли в себе мутированные гены, дающие им защиту от фагов. Невосприимчивые бактерии передали свои гены потомкам. Критики фаготерапии утверждали, что она только подстегнет эволюцию невосприимчивых к фагам бактерий, что вызовет резкий скачок инфекций.
Защитники фаготерапии отвечали на это тем, что фаги тоже способны эволюционировать. При размножении они могут приобретать мутации, которые дадут им новые пути для заражения устойчивых бактерий. Ученые могут даже помочь фагам в этом. Они могут среди тысяч видов фагов найти таких, которые станут наилучшим средством в борьбе с определенной инфекцией. Они могут даже, немного повозившись с ДНК, создать фагов, способных убивать по-новому.
В 2008 году Джеймс Коллинз (James Collins), биолог из Бостонского университета, и Тим Лю (Tim Lu) из Массачусетского Технологического университета, опубликовали описание первого вида фагов, специально созданного для убийства бактерий. Этот вид был особенно эффективен благодаря тому, что он атаковал эластичные оболочки, окутывающие бактерий, называемые биопленками. Биопленка становится непреодолимой преградой как для антибиотиков, так и для фагов, не способных пробиться внутрь через ее толстый слой. Коллинз и Лю в научной литературе начали поиски гена, который мог бы позволить фагам лучше разрушать биопленку. В самих бактериях содержатся энзимы, позволяющие им разрушать биопленку и вырываться наружу, когда приходит время заражать новые организмы. Коллинз и Лю синтезировали ген, отвечающий за выработку одного из таких энзимов, и вживили его фагам. Затем они настроили ДНК фагов таким образом, чтобы они начинали производство большего количества энзима при проникновении в микроб-носитель. Когда они опробовали фаги на биопленке кишечной палочки, фаги проникли в бактерии в верхнем слое биопленки и заставили их производить как новых фагов, так и большее количество энзима. Инфицированные микробы лопались, выпуская энзимы, разрушающие более глубинные слои биопленки, и позволяя фагам заражать содержащиеся в ней бактерии. Сконструированные таким образом фаги способны убить 99,997% бактерий кишечной палочки в биопленке, что в сотни раз превосходит результаты, показываемые обычными фагами.