Читать «Проклятые вопросы» онлайн - страница 137

Ирина Львовна Радунская

В стёклах упорядоченность может быть обнаружена только в расположении ближайших соседей. Дальше царствует хаос. Именно это и роднит стекло с жидкостями. Различие между ними лишь в величине вязкости. Она столь велика, а текучесть стекла столь мала, что по механическим свойствам оно близко к хрупким твёрдым телам.

Имеется ещё один признак отличия. Кристаллы плавятся, превращаясь в жидкость при вполне определённой для каждого вида температуре. Физики называют такое их превращение фазовым переходом. Кристаллическая фаза, говорят они, переходит в жидкую фазу при постоянной температуре. Так, лёд превращается в воду при 0 °C и в обычных условиях не может оставаться льдом при более высокой температуре.

Стекло же не знает такого перехода. При медленном нагревании его вязкость постепенно уменьшается до тех пор, пока не станет столь малой, что стекло превратится в жидкость. Изменение температуры во время такого перехода может достигать сотен градусов.

Стекло изредка встречается в природе. Это сплав окислов различных металлов, возникающих при извержении вулканов. Иногда капли стекла образуются при попадании молнии в песчаную почву. Стекло, применяемое людьми, изготавливается искусственно. Для этого в специальных печах расплавляют специально подобранные смеси окислов, тщательно перемешивают расплав и медленно остужают. Мастера на опыте определили составы смесей, позволяющих получать прозрачные бесцветные или окрашенные стекла.

Большая часть применяемых стёкол содержит в качестве основной части двуокись кремния. Такие стёкла называют силикатными.

Создатель первого лазера, работающего на стекле, американский учёный Е. Снитцер, изготовил для своего лазера особое стекло, добавив в исходный состав окись неодима, одного из редкоземельных элементов. Ионы неодима придали стеклу нежный сиреневый цвет. Снитцер изготовил из него круглый стержень, торцы которого были тщательно отполированы и посеребрены. Его генерация возбуждалась вспышками.

Лазерное излучение, порождаемое ионами неодима, лежит за пределами видимого спектра в начале его инфракрасной части. Многовековое совершенствование технологии производства стекла позволило изготавливать из него большие, весьма однородные блоки, предназначавшиеся для объективов крупных телескопов.

На этой основе технологами было налажено изготовление рабочих элементов для лазеров, намного превосходивших рабочие элементы из рубина по размерам и однородности. Важно и то, что они обходились гораздо дешевле.

Затем появились полупроводниковые лазеры. Возможность их создания предсказал Басов. Но реализация таких лазеров оказалась очень трудной.

Американским учёным удалось найти путь, технически сложный, но во многом более доступный. Они сформировали двухслойный полупроводниковый элемент, в котором на границе слоёв образуется тонкая прослойка. В ней и осуществляются условия, необходимые для усиления света, идущего вдоль пограничного слоя. Для реализации лазерного усиления достаточно пропускать поперёк пограничного слоя слабый электрический ток. Для получения лазерной генерации здесь можно обходиться без зеркальных слоёв. Достаточно научиться аккуратно скалывать края этого полупроводникового сэндвича так, чтобы сколы были параллельны между собой.