Читать «Вселенная в электроне» онлайн - страница 17

Владилен Сергеевич Барашенков

У писателя И. А. Ефремова есть фантастический рассказ о том, как в далеком космосе встретились посланцы двух биологических рас — одной, живущей на основе кислорода, и другой, основанной на фторе. Все очень похоже, но газ жизни одной расы — смертельный, разъедающий яд для другой. Даже их дыхание опасно друг для друга. То же самое было бы для существ, построенных из вещества и антивещества. Все физические законы, все краски их миров совершенно одинаковы; только от условия зависит, что назвать миром, а что — антимиром. Но при соприкосновении — аннигиляция, взрыв!

Правда, полное излучение вещества происходит не всегда. Так при аннигиляции нуклона с антинуклоном «сгорает» лишь часть вещества, другая его часть остается в виде мезонных осколков. Тем не менее даже с учетом несгоревших «шлаков» энергия антипротонного и антинейтронного взрывов в несколько тысяч раз больше энергии, выделяющейся при аннигиляции легких частиц — электрона и позитрона. Это самое мощное энерговыделение, которое мы умеем осуществлять в лабораторных условиях. Недаром писатели-фантасты часто используют антивещество в качестве горючего для звездолетов будущего. Килограммовый слиток такого вещества даст столько же энергии, сколько можно получить из нефтяного озера глубиной в несколько метров и диаметром около километра. Это означает, что всего несколько килограммов антивещества способны заменить все горючее, которое сжигается на Земле за год.

Конечно, эти килограммы антивещества надо еще изготовить — синтезировать из антипротонов и антинейтронов, а это очень сложная и энергоемкая задача. Пока ученые научились изготавливать лишь самые простые антиядра, состоящие из двух и трех античастиц: антидейтрон, антитритон и легкий изотоп антигелия. Несколько лет назад этот изотоп был получен в опытах на ускорителе протонов, построенном под Москвой, вблизи Серпухова. Синтез тяжелых антиядер — исключительно трудная задача. Правда, трудности здесь технического порядка, никаких принципиальных препятствий на этом пути нет. Возможно, что когда-нибудь изготовление антиядер станет такой же отраслью большой индустрии, как в наши дни производство кюрия и других трансурановых элементов.

Перейдем теперь на соседнюю аллею — к лептонам. Первыми мы встречаем здесь три почти одинаковые частицы: электроны, π-мезон, и τ-мезон. Различаются они лишь своей массой (мю-мезон в двести с лишним раз тяжелее электрона, тау-мезон — еще более тяжелая частица) да еще тем, что, в отличие от электрона, мю- и тау- мезоны радиоактивные, они распадаются на электрон и нейтрино. Правильнее было бы назвать их не мезонами, а тяжелыми электронами. До сих пор до конца неясно, зачем потребовалось природе несколько различающихся по весу «изданий» электронов.