Читать «В поисках чуда (с илл.)» онлайн - страница 30

Лев Викторович Бобров

Более того: оказалось, что вовсе не обязательно добавлять именно кислород. Даже аргон, введенный в сосуд, вызывал свечение. Инертный, химически бездеятельный газ, он, разумеется, в реакции сам не принимал участия. Он лишь поднимал давление, заставляя реагировать фосфор и кислород, присутствующие в колбе.

Это шло вразрез со всеми тогдашними теоретическими воззрениями. Статья Ю. Б. Харитона и З. Ф. Вальта, напечатанная в Германии, подверглась резкой критике со стороны профессора М. Боденштей — на, крупнейшего знатока во всем, что касалось тонкого химизма взаимодействий. «Иллюзия!» — аттестовал маститый немецкий ученый результаты молодых советских авторов. Мол, свечения не было потому, что в сосуде вообще не было кислорода, хотя экспериментаторам и казалось, будто они его туда вводили. Обычная ошибка опыта…

Н. Н. Семенов решил сам повторить работу от начала до конца скрупулезнейшим образом, со всеми мыслимыми предосторожностями. Результаты полностью подтвердились. Кроме того, был обнаружен новый, столь же поразительный эффект: значение критического давления тем меньше, чем больше объем сосуда. Так на арену споров выступил еще один параметр горения — критические размеры сосуда.

Но как объяснить странные закономерности?

При падении давления ниже критического молекулы фосфора и кислорода не перестают сталкиваться друг с другом. Почему же эти многократные «рандеву» не оканчиваются тотчас и повсеместно вступлением в «брак» и свадебным фейерверком? Почему для заключения «брачного союза» требуется, чтобы где-то поблизости присутствовали в определенном количестве другие участники церемонии — дополнительные порции кислорода или аргона? И какую роль играют просторы, так сказать, кубатура помещения, где происходит химическая «помолвка»?

В свое время у химиков подобное недоумение вызывала другая загадка. Достаточно яркому световому лучу упасть на смесь хлора и водорода, чтобы началась реакция, протекающая взрывообразно.

Не кто иной, как Боденштейн, установил, что один-единственный фотон приводит к образованию сотен тысяч молекул хлористого водорода. Это как-то не вязалось с эйнштейновским законом фотохимической эквивалентности, согласно которому один квант может вызвать лишь один элементарный акт химического превращения.

Немецкий физико-химик Нернст дал такое объяснение. Порция световой энергии расщепляет двухатомную молекулу хлора: Cl2 = 2Cl. Каждый из разлученных атомов-близнецов немедленно начинает рыскать, подыскивая себе достойного партнера. И находит: он отрывает его у первой попавшейся двухатомной молекулы водорода, когда случайно сшибается с ней: Cl + H2 = HCl + H. Водородный атом, «третий лишний», в свою очередь, разбивает молекулу хлора и тут же связывает себя «брачными узами» с одним из ее атомов: H + Cl2 = HCl + Cl. Новый «холостяк» продолжает дело, начатое его предшественником. И так снова и снова. Но после каждого нападения происходит «обручение» атомов H и Cl, причем молодая чета HCl тотчас выбывает из игры, оставляя всякий раз одного отщепенца. Стремительно развиваясь, вереница взаимодействий охватывает молекулу за молекулой. Перед нами цепная химическая реакция. Правда, цепочка может оборваться, если атом хлора встретится не с молекулой водорода, а с себе подобным. Но ведь на сосуд со смесью падает не один квант! Если же в реакционном объеме цепочек множество, то они могут охватить всю смесь.