Читать «О начале человеческой истории» онлайн - страница 439
Борис Федорович Поршнев
Счисление — это мысленное окончание серии, не обязательно совпадающее с её материальным исчерпанием. Его логический генезис опять-таки восходит к двойке. Однако на этот раз двойка абстрактна, это не та двойка, которая начинает серию и для которой достаточно, чтобы предмет не отличался от другого предмета той же природы, нет, эта двойка связывает предметы и из разных серий, разной природы, так как она одолевает всякое различие предметов: А отличается от В, но не больше и не меньше, чем В от С, «интервалы» между ними вполне тождественны, ибо любое различие уже значило бы оппозицию, исключающую смешение. Оппозиция всегда абсолютна и равна себе — либо она есть, либо её нет. Вот как появляется эта другая двойка и с нею число два. Это счисление не предметов, а интервалов. Здесь сопоставляются довольно абстрактные свойства вещей: не сами они, но «зияния» между ними. Различий нет, провозглашает двойка, все «зияния» вполне одинаковы, т. е. А: В как В: С.
Дальнейший переход к ряду чисел заложен в том обстоятельстве, что эта двойка интервалов подразумевает тройку предметов. В этом противоречии таится гигантская логическая потенция. Казалось бы, что им друг до друга, раз их сущность столь противоположна: тройка выражает различия, двойка безразлична к различиям. Это пережиточно отразилось в сказках и верованиях: два и другие чётные числа до двенадцати преимущественно ассоциируются с одинаковыми или похожими явлениями (близнецы и пр.), а три и нечётные числа — с явно различными (три пути перед богатырём, три испытания и пр.).
Различие чётных и нечётных чисел останется неустранимым следом этой первичной противоположности двойки и тройки, даже само слово «чёт» означает два («чета»). Но, говоря о натуральном ряде, мы забегаем вперёд, ибо его секрет в исходной проблеме двойки и тройки. Получатся ли две разные двойки, если взято две тройки предметов? Нет, не может быть разных двоек; но тем самым тройка является логически необходимой, как вообще минимум счётных предметов, как минимальная серия, соотносящаяся с двойкой. Тройка приобретает качество абстрактного числа; однако тогда двойка в свою очередь начинает приобретать качество порядкового номера для счисления предметов. Обретение ими общей природы осуществляется и выражается в акте их сложения — в пятёрке. Только когда есть сложение, может возникнуть и удвоенная двойка, т. е. четвёрка, которая, кстати, содержит в своём рождении все три арифметических действия: не только сложение двоек, но и их умножение и их возведение в степень.