Читать «Истина и красота. Всемирная история симметрии.» онлайн - страница 223

Иэн Стюарт

Неизвестный вавилонянин, открывший, как решать квадратное уравнение, и представить себе не мог, даже в самых невероятных мечтах, во что превратится его наследие три с лишним тысячи лет спустя. Никто не мог бы предположить, что вопросы о разрешимости уравнений приведут к одной из ключевых концепций в математике — концепции группы — или что группы окажутся языком, на котором описывается симметрия. Еще менее того можно было полагать, что симметрии откроют нам дверь к тайнам физического мира.

В физике польза от умения решать квадратные уравнения очень ограниченна. Пользы от умения решать уравнение пятой степени и того меньше — уже по той причине, что всякое решение по необходимости будет численным, а не аналитическим или же будет выражаться с помощью символов, специально для этой цели изобретенных и едва ли поэтому пригодных на что-либо, кроме как прикрывать проблему фиговым листком. Но понимание того, почему уравнения пятой степени не решаются, осознание ключевой роли симметрии и развитие сопутствующих идей настолько далеко, насколько возможно, — все это открыло целые области физического мира.

Процесс идет. Следствия из симметрии для физики, а на самом деле и для науки в целом, остаются в достаточной степени неисследованными. Многого мы еще не понимаем. Но что мы понимаем наверняка, так это тот факт, что группы симметрии — наш проводник через неисследованные земли, по крайней мере до тех пор, пока не появится некая более мощная концепция (уже, быть может, ожидающая своего часа в какой-нибудь безвестной диссертации).

В физике красота не дает автоматической гарантии истинности, но она ей способствует.

В математике красота должна быть истиной — поскольку все ложное уродливо.

Литература

John С. Baez, The octonions, Bulletin of the American Mathematical Society, volume 39 (2002), 145–205.

E.T. Bell, Men of Mathematics (2 volumes), Pelican, Harmondsworth, 1953.

R. Bourgne and J.-P. Azra, Écrits et Mémoires Mathématiques d'évariste Galois, Gauthier-Villars, Paris, 1962.

Carl B. Boyer, A History of Mathematics, Wiley, New York, 1968.

W.K. Buhler, Gauss: A Biographical Study, Springer, Berlin, 1 981.

Jerome Cardan, The Book of My Life (translated by Jean Stoner), Dent, London, 1931.

Girolamo Cardano, The Great Art or the Rules of Algebra (translated T. Richard Witmer), MIT Press, Cambridge, MA, 1968.

A.J. Coleman, The greatest mathematical paper of all time, The Mathematical Intelligencer, volume 11 (1989), 29–38.

Julian Lowell Coolidge, The Mathematics of Great Amateurs, Dover, New York, 1963.

C.W. Davies and J. Brown, Superstrings, Cambridge University Press, Cambridge, 1988.

Underwood Dudley, A Budget of Trisections, Springer, New York, 1987.

Alexandre Dumas, Mes Mémoires (volume 4), Gallimard, Paris, 1967.

Euclid, The Thirteen Books of Euclid's Elements (translated by Sir Thomas L. Heath), Dover, New York, 1956 (3 volumes).

Carl Friedrich Gauss, Disquisitiones Arithmeticae (translated by Arthur A. Clarke), Yale University Press, New Haven, 1966.