Читать «Истина и красота. Всемирная история симметрии.» онлайн - страница 223
Иэн Стюарт
Неизвестный вавилонянин, открывший, как решать квадратное уравнение, и представить себе не мог, даже в самых невероятных мечтах, во что превратится его наследие три с лишним тысячи лет спустя. Никто не мог бы предположить, что вопросы о разрешимости уравнений приведут к одной из ключевых концепций в математике — концепции группы — или что группы окажутся языком, на котором описывается симметрия. Еще менее того можно было полагать, что симметрии откроют нам дверь к тайнам физического мира.
В физике польза от умения решать квадратные уравнения очень ограниченна. Пользы от умения решать уравнение пятой степени и того меньше — уже по той причине, что всякое решение по необходимости будет численным, а не аналитическим или же будет выражаться с помощью символов, специально для этой цели изобретенных и едва ли поэтому пригодных на что-либо, кроме как прикрывать проблему фиговым листком. Но понимание того, почему уравнения пятой степени не решаются, осознание ключевой роли симметрии и развитие сопутствующих идей настолько далеко, насколько возможно, — все это открыло целые области физического мира.
Процесс идет. Следствия из симметрии для физики, а на самом деле и для науки в целом, остаются в достаточной степени неисследованными. Многого мы еще не понимаем. Но что мы понимаем наверняка, так это тот факт, что группы симметрии — наш проводник через неисследованные земли, по крайней мере до тех пор, пока не появится некая более мощная концепция (уже, быть может, ожидающая своего часа в какой-нибудь безвестной диссертации).
В физике красота не дает автоматической гарантии истинности, но она ей способствует.
В математике красота
Литература
John С. Baez,
E.T. Bell,
R. Bourgne and J.-P. Azra,
Carl B. Boyer,
W.K. Buhler,
Jerome Cardan,
Girolamo Cardano,
A.J. Coleman,
Julian Lowell Coolidge,
C.W. Davies and J. Brown,
Underwood Dudley,
Alexandre Dumas,
Euclid,
Carl Friedrich Gauss,