Читать «Головоломки. Выпуск 1» онлайн - страница 4
Яков Исидорович Перельман
7. Стрельба на пароходе
Хороший стрелок стоит у одного борта парохода, а у противоположного помещена мишень.
Рис. 4. Тир на палубе парохода
Пароход движется в направлении, показанном на рис. 4 длинной стрелкой.
Стрелок прицелился совершенно точно. Попадет ли он в цель?
8. Под водой
На обыкновенных весах лежат: на одной чашке – булыжник, весящий ровно 2 кг, на другой – железная гиря в 2 кг. Я осторожно опустил весы под воду.
Остались ли чашки в равновесии?
9. Как это сделано?
Вы видите здесь деревянный куб, составленный из двух кусков дерева (рис. 5). Верхняя половина куба имеет выступы, входящие в выемки нижней части. Обратите внимание на форму и расположение выступов и объясните: как ухитрился столяр соединить оба куска?
Рис. 5. Хитроумное соединение в собранном виде
10. Скорость поезда
Вы сидите в вагоне железной дороги и хотели бы узнать, с какой скоростью он мчится. Можете ли вы определить скорость по стуку колес?
Решения задач 1-10
1. Различно расположенных прямоугольников в этой фигуре можно насчитать 225.
2. Если речь идет о
Но это вовсе не значит, что на той дощечке термометра, на которой нанесены деления (на «шкале»), длина градусов у термометра Реомюра всегда должна быть больше, чем у термометра Цельсия. Длина деления зависит от того, сколько ртути в шарике термометра, и от толщины трубки. Чем больше ртути в шарике и чем тоньше канал трубки, тем выше поднимается ртуть в трубке при нагревании и тем больше промежуток между делениями шкалы. В этом смысле «градус» может иметь самую разную длину, и вполне понятно, что в термометре Реомюра такой градус может быть и меньше градуса в термометре Цельсия.
3. Легко узнать, каков был
Отсюда узнаем, что столяр заработал
20 руб. 50 коп. + 3 руб.,
т. е. 23 руб. 50 коп.
4. Вот каким способом можете вы получить 100 из ряда девяти цифр и трех знаков + и
123 – 45 – 67 + 89 = 100.
В самом деле:
123 + 89 = 212,
45 + 67 = 112,
212 -112 = 100.
Других решений задача не имеет. Впрочем, если у вас есть терпение, попытайтесь испробовать другие сочетания.
5. Казалось бы, надо просто сложить страницы трех томов – и задача решена. Но не спешите с решением. Обратите внимание на то, как стоят книги на полке и как расположены в них страницы.
Вы видите, что 1-я страница тома I примыкает к 640-й странице тома II, а последняя страница тома III находится рядом с первой страницей тома II (рис. 6).
И если червь проделал ход от 1-й страницы тома I до последней страницы тома III, то он прогрыз всего только 640 страниц среднего тома да еще 4 крышки переплета, не более.
Рис. 6. Сколько страниц и крышек переплета прогрыз книжный червь?
6. Существует бесчисленное множество пар таких чисел. Вот несколько примеров: