Читать «Головоломки. Выпуск 1» онлайн - страница 15
Яков Исидорович Перельман
7. Мы знаем, что Володя вдвое старше Жени, а Надя и Женя вместе вдвое старше Володи. Значит, годы Нади и Жени, сложенные вместе,
Далее, мы знаем, что сумма лет Алеши и Володи вдвое больше суммы лет Нади и Жени. Но возраст Володи есть удвоенный возраст Жени, а годы Нади и Жени, сложенные вместе, есть учетверенный возраст Жени. Следовательно,
годы Алеши + удвоенный возраст Жени = 8-кратному возрасту Жени,
т. е.:
Наконец, нам известно, что сумма возрастов Лиды, Нади и Жени равна удвоенной сумме возрастов Володи и Алеши.
Имея перед глазами табличку:
Лиде – 21 год.
Надя – в 3 раза старше Жени,
Володя – в 2 раза старше Жени,
Алеша – в 6 раз старше Жени,
мы можем сказать, что
21 год + утроенный возраст Жени + возраст Жени = 4-кратному возрасту Жени + 12-кратному возрасту Жени,
или:
21 год + 4-кратный возраст Жени = 16-кратному возрасту Жени.
Значит, 21 год равен 12-кратному возрасту Жени и, следовательно, Жене 21: 12 = 13/4 года.
Теперь уже легко определить, что Володе 31/2 года, Наде – 51/4 и Алеше – 101/2 лет.
8. Для ясности нарисуем рядом две свечи – толстую, которая сгорает за 5 часов, и тонкую, которая сгорает за 4 часа. Заштрихуем сгоревшие части обеих свечей. Легко сообразить, что длина сгоревшей части тонкой свечи должна составлять 5/4 длины сгоревшей части толстой; другими словами, заштрихованный избыток тонкой свечи составляет по длине 1/4 сгоревшей части толстой. Но в то же время длина этого избытка равна 1/4 длины толстого огарка. Другими словами, мы узнали, что 3/4 длины толстого огарка равны 1/4 длины сгоревшей части толстой свечи. Значит, 4/4 толстого огарка, т. е. весь огарок, составляет 1/4 × 4/3 = 1/3 толстой свечи.
Итак, огарок толстой свечи равен 1/3 сгоревшей части или 1/4 всей длины свечи. Сгорело, следовательно, 3/4 толстой свечи. А так
Рис. 6. Две свечи – толстая и тонкая как вся свеча могла сгореть за 5 часов, то 3/4 ее горело в течение
Ответ: свечи горели 33/4 часа.
9. Каждый ученик и ученица ежедневно раскланивались со всеми остальными школьниками и с заведующим. С самими собою, конечно, не раскланивались, зато делали поклон заведующему, так что каждый школьник и школьница ежедневно делали столько поклонов, сколько было детей в школе. Значит, все дети вместе ежедневно делали столько поклонов, сколько будет, если умножить их общее число само на себя.
Итак, мы знаем, что 900 – это число детей, умноженное само на себя. Какое же число, умноженное на себя, составит 900? Очевидно, 30. А так как девочек было вдвое больше, чем мальчиков, то из 30 детей было 20 девочек и 10 мальчиков.
Проверим это. Девочки делают 19 × 20 = = 380 поклонов подругам и 20 × 10 = 200 поклонов мальчикам. Мальчики мальчикам делают 9 × 10 = 90 и девочкам – 10 × 20 = = 200 поклонов. Итого: 380 + 200 + 90 + 200 = 870 поклонов. Присоединив еще 30 поклонов заведующему, имеем ровно 900.
10. Задачу надо решать с конца. Самый младший сын получил столько брильянтов, сколько было сыновей, и еще 1/7 остальных; но так как остатка никакого не было, то младший сын получил столько брильянтов, сколько было всех сыновей. Далее, предыдущий сын получил брильянтов на один меньше, чем было сыновей, да еще 1/7 остальных брильянтов. Значит, то, что получил самый младший, есть 6/7 этого «остального» (а все «остальное» есть 7/7).