Читать «Истина и доказательство» онлайн - страница 11

Альфред Тарский

Аксиоматический метод является продуктом длительного исторического развития. Некоторые представления об этом развитии будут, вероятно, существенными для понимания современного понятия доказательства. Первоначально математика была совокупностью высказываний, касавшихся некоторого класса объектов или феноменов. Эта совокупность не имела никакого структурного порядка; высказывание рассматривалось как истинное либо потому, что казалось интуитивно очевидным, либо потому, что было доказано на основе некоторых интуитивно очевидных высказываний (то есть если было показано посредством некоторого интуитивно несомненного аргумента, что оно есть следствие этих высказываний). Критерий интуитивного доказательства (и интуитивной несомненности аргументов) применялся без каких-либо ограничений. Каждое предложение, признаваемое за истинное на основании этого критерия, автоматически включалось в дисциплину. Такое описание, по-видимому, соответствует, например, геометрии в том виде, как она была известна древним египтянам и грекам доевклидова периода.

Однако вскоре было понято, что критерий интуитивного доказательства весьма далёк от непогрешимости и часто ведёт к серьёзным ошибкам. Развитие аксиоматического метода можно рассматривать как выражение тенденции ограничить обращение к интуитивной очевидности. Эта тенденция проявляется прежде всего в стремлении доказать как можно больше предложений и, следовательно, ограничить, насколько это возможно, число предложений, принимаемых за истинные только на основе интуитивной очевидности. Идеалом с этой точки зрения было бы доказательство истинности каждого предложения, которое принимается за истинное. По вполне очевидным причинам этот идеал не может быть реализован: мы доказываем каждое предложение на основе других предложений, а эти другие предложения — на основе дальнейших предложений, и так далее. Если мы хотим избежать как порочного круга, так и бесконечного регресса, нужно где-то прервать эту процедуру.

В качестве компромисса между недостижимым идеалом и реализуемыми возможностями возникли два принципа, которые были последовательно применены при построении математических дисциплин. Согласно первому из этих принципов, каждая дисциплина начинается с перечня небольшого количества предложений, именуемых аксиомами или исходными предложениями, которые представляются как интуитивно самоочевидные и признаются истинными без каких-либо дополнительных подтверждений. Согласно второму принципу, никакое предложение в рамках данной дисциплины не рассматривается как истинное до тех пор, пока мы не будем в состоянии доказать его исключительно с помощью аксиом и тех предложений, которые доказаны раньше. Все те предложения, которые могут признаваться за истинные на основании этих двух принципов, именуются теоремами или доказуемыми предложениями данной дисциплины. Два аналогичных принципа касаются употребления терминов при построении дисциплины: согласно первому из них, сначала перечисляют незначительное число терминов, именуемых неопределяемыми или исходными терминами, которые выступают в качестве непосредственно понимаемых и которые мы решаем использовать (при формулировке и доказательстве теорем), не расширяя их значения. Согласно второму принципу, договариваются не использовать никаких дополнительных терминов, если мы не в состоянии объяснить их значение с помощью исходных неопределяемых терминов и терминов, ранее определённых.