Читать «E=mc2. Биография самого знаменитого уравнения мира» онлайн - страница 29

Дэвид Боданис

Мысль интересная, может сказать циник, но даже если верхний предел скорости существует, нам-то что с того? Как может влиять его существование на движение тел во вселенной? Ну поставьте на шоссе щит с надписью: «Внимание: скорость, превышающая 300000000 м/с достигнута быть не может!» — машины все равно будут проноситься мимо него так, точно его там нет.

Ой ли? Именно здесь вся аргументация Эйнштейна делает полный круг и возвращается к своему истоку: здесь он показывает, что удивительные свойства света — то обстоятельство, что он по самой природе своей неизменно ускользает от нас и потому его скорость представляет собой верхний предел любой другой, — наконец-то, по-настоящему соотносится с природой энергии и массы. Чтобы понять, как это происходит, давайте рассмотрим пример, являющийся производным от того, которой приводил сам Эйнштейн.

Предположим, что некий космический корабль летит со скоростью, очень близкой к скорости света. При нормальных обстоятельствах, когда он движется медленно, подкачка энергии в двигатели корабля позволяет увеличить его скорость. Однако, когда скорость эта почти достигает скорости света, все изменяется. Лететь еще быстрее корабль попросту не может.

Пилот корабля не желает смириться с этим и начинает лихорадочно щелкать переключателями на пульте управления двигателем, стараясь разогнать корабль посильнее. И, разумеется, видит, как любой луч света, замеченный им впереди корабля, уносится от него на полной скорости «с». Что, собственно говоря, видит и любой другой наблюдатель. Как ни старается пилот, догнать свет его кораблю не удается. Но что же происходит?

Представьте себе компанию студентов, забившуюся в телефонную будку, представьте их лица, приплющенные к ее стеклянным стенкам. Представьте парад с вьющимся над ним надувным шаром, соединенным с насосом, отключение которого по какой-то причине оказывается невозможным. Шар начинает раздуваться и приобретает размеры намного большие тех, какие для него были задуманы. Примерно то же происходит и с космическим кораблем. Двигатели его ревут, перекачивая энергию, однако скорость корабля от этого не возрастает, поскольку ничто не может перемещаться быстрее света. Но ведь и энергия попросту исчезнуть тоже не может.

В результате, энергия, накачиваемая в двигатель, «сжимается» и обращается в добавочную массу. Сторонний наблюдатель видит, как начинает расти масса корабля. Поначалу совсем немного, однако по мере того, как продолжается подкачка энергии, масса все увеличивается и увеличивается. Корабль словно бы «раздувается».

Звучит довольно нелепо, и тем не менее, у сказанного имеются экспериментальные подтверждения. Если начать разгонять протоны, обладающие в неподвижном состоянии «единицей» массы, то поначалу они будут, как вы и ожидаете, набирать скорость. Однако затем, когда эта скорость приблизится к световой, наблюдатель обнаружит изменения, происходящие с самими протонами. Это явление наблюдается в ускорителях, расположенных под Чикаго, в ЦЕРНе (европейском центре ядерных исследований), который находится неподалеку от Женевы, — да, собственно, и везде, где работают физики. Сначала протоны, «раздуваясь», приобретают массу, равную двум единицам, — становятся в два раза тяжелее, чем были в начале эксперимента, — затем равную трем и так далее, — масса продолжает расти, пока в протоны накачивается энергия. При скорости, составляющей 99,9997 процентов «с», протоны становятся в 430 раз тяжелее, чем были. (При этом из окрестных электростанций забирается такая энергия, что эксперименты подобного рода приходится назначать на поздние ночные часы, — дабы от местных жителей не посыпались жалобы на перебои со светом.)