Читать «Бегство от удивлений» онлайн - страница 149
Глеб Борисович Анфилов
Тут-то Эйнштейн и сделал выбор между движением и неподвижностью, отдав предпочтение последней. Он приравнял нулю тот из сомножителей, где содержалась величина, связанная со скоростью изменения средней плотности мировой материи. И отсюда, с помощью космологической постоянной, извлек свою модель стационарного замкнутого мира, ту самую, что оказалась потом шаткой и ненадежной.
Фридман же, допустив в принципе нестационарность Вселенной, приравнял нулю другой сомножитель. И получил целый класс новых, неожиданных решений. Все они представляли собой математические функции, изменяющиеся с течением времени.
Здесь законен вопрос: а какого времени? Ведь если материи во Вселенной позволено двигаться, то, надо думать, и времени разрешено претерпевать изменения вместе с движущейся материей — как того требует теория относительности. Можно ли тогда соблюсти строгость, рассуждая об изменении Вселенной в каком-то одном, едином времени? Не возрождается ли ньютоновская абсолютность?
Да, можно. Нет, не возрождается.
Положение спасает эйнштейновский моллюск — деформирующаяся система отсчета. В каждой точке однородной, лишенной крупных потоков и вихрей, Вселенной мы вправе представить себе моллюск, неподвижный относительно ближайших космических окрестностей — так называемые сопутствующие координаты. В них последовательность мировых событий едина. А потому каждый наблюдатель, покоящийся относительно сопутствующих координат, может пользоваться собственным временем для всей Вселенной. Строение и поведение моллюска как раз и дает космологическую модель мира.
Пульс мира
Фридмановские модели не могли не двигаться. Мир с необходимостью обрел динамизм. Как же решался вопрос о его конечности или бесконечности?
Допускались обе эти возможности — дело зависело от средней плотности материи. При большой средней плотности вышел мир конечный и пульсирующий, как сердце. Такова закрытая космологическая модель Фридмана. А при малой средней плотности из уравнений вставала открытая модель — бесконечная, способная либо расширяться, либо сжиматься. Причем во всех случаях тем быстрее, чем дальше от наблюдателя.
Эта особенность фридмановских моделей трудновата для наглядного представления: кажется нелепостью расширение сразу изо всех точек или сжатие сразу ко всем точкам (потому что в каждой может находиться наблюдатель). Но надо вспомнить, что речь идет не о движении тел в пространстве—времени, а о деформации самого пространства — времени, самой системы отсчета (моллюска), о преобразовании действующих там метрических правил: чем дальше, тем заметнее становятся изменения метрики. Прочувствуйте это хорошенько, вспомнив сказанное раньше о неевклидовой геометрии, — и будет, я думаю, понятно.