Читать «В мире металлов» онлайн - страница 94

Сергей Иосифович Венецкий

Без кобальта и с кобальтом

Мощные постоянные магниты изготовляют обычно из сплавов на основе кобальта - металла, довольно дефицитного. Японская фирма "Мацусита" разработала новый магнитный сплав, главные компоненты которого — марганец, алюминий и углерод. Магниты из этого материала примерно на 30 % сильнее кобальтовых. К достоинствам сплава относится и возможность обрабатывать его на токарном станке.

Но для кобальта ученые находят все новые области применения. Другая японская фирма освоила выпуск магнитофонной ленты из кобальтового сплава толщиной всего 0,3 микрона. Преимущества новой ленты очевидны: при тех же габаритах кассеты объем звукозаписи возрастает в десять раз.

"Двуликий" сплав

Польские ученые разработали уникальный сплав, который в зависимости от напряжения электрического тока может проявлять либо магнитные, либо полупроводниковые свойства. Благодаря такому "двуличию" сплав, состоящий из кадмия, марганца, теллура и других элементов, найдет разнообразное применение во многих электронных устройствах и приборах.

Алхимия наизнанку

Усилия средневековых алхимиков были направлены на то, чтобы без особого труда превращать различные недефицитные материалы в золото. И хотя поиски алхимиков в этом направлении зашли в тупик, наука продолжала искать пути получения одних элементов из других.

Современным ученым, как известно, такая задача вполне по плечу. Но велико было бы удивление алхимиков, если бы они узнали, чем занимаются их непутевые потомки: оказывается, например, вместо того чтобы денно и нощно, не покладая рук, добывать золото из других веществ, они безрассудно обстреливают этот благородный металл какими-то частицами, стремясь превратить его во франций — металл, которого практически нет в природе.

Действительно, один из наиболее распространенных способов получения франция заключается в облучении "мишеней" из золота многозарядными ионами неона, ускоренными на циклотронах или линейных ускорителях. Такие процессы можно с полным основанием назвать "алхимией наизнанку".

Молчит ли металл?

Уставший человек может прекратить работу и отдохнуть. Ну, а если "устал" металл, находящийся под нагрузкой? Как узнать об этом, чтобы вовремя заменить "уставшую" деталь? Ведь металл молчит.

Молчит ли? Оказывается, нет. Ученые Всесоюзного научно-исследовательского института методов и средств неразрушающего контроля создали ультразвуковую установку, которая позволяет определять дефекты, появляющиеся в металле в процессе работы, по так называемым деформационным шумам. Дело в том, что при чрезмерных нагрузках кристаллическая структура металла начинает нарушаться. Часть выделяющейся при этом энергии превращается в звуковые колебания, они улавливаются специальным датчиком и передаются самопишущему устройству.

Если, например, стальную полосу, к которой прикреплен датчик, сгибать попеременно в одну и другую сторону, то сначала самописец будет чертить на бумажной ленте прямую линию — это значит, что сталь выдерживает нагрузку "без осложнений". Но вот на ленте появился крохотный зубчик, затем другой, третий ... Так установка сигнализирует о том, что кристаллическая решетка "дала трещину". Чем сильнее развивается разрушительный процесс, тем более крупные зубцы вычерчивает самописец.