Читать «Одураченные случайностью. О скрытой роли шанса в бизнесе и в жизни» онлайн - страница 32
Нассим Николас Талеб
Математика Монте-Карло
Это - факт, что "истинные" математики не любят методы Монте-Карло. Они полагают, что такие методы крадут у нас изящество и элегантность математики. Они называют это "животной силой", поскольку мы можем заменить большую часть математических знаний симулятором Монте-Карло (и другими вычислительными уловками). Например, без формального знания геометрии можно вычислять таинственное, почти мистическое число ?1. Как? Просто вписав круг внутрь квадрата и "стреляя" случайными пулями в получившуюся картину. При этом надо предположить равные вероятности для попадания в любую точку картины (что называется равномерным распределением). Отношение пуль внутри круга к количеству пуль внутри и вне круга, даст значение мистического р!, с почти бесконечной точностью. Ясно, что это - не эффективное использование компьютера, поскольку р! может быть вычислено аналитически, то есть в математической форме, но метод может давать некоторым пользователям большее понимание предмета, чем строки уравнений. Умственные способности и интуиция некоторых людей ориентированы таким способом, что они более восприимчивы к получению знаний именно в такой манере (я считаю себя одним из них). Компьютер возможно, не естественен для нашего человеческого мозга, как, впрочем, и математика.
Я - не "урожденный" математик, то есть я говорю на языке математики не как на родном языке, а со следами иностранного акцента. Сами по себе, математические изыски меня не интересуют, только их применение, в то время, как математик интересовался бы улучшением математики (через теоремы и доказательства). Я оказался неспособным к концентрации на расшифровке отдельного уравнения, если я не мотивирован реальной проблемой (и толикой жадности). Поэтому большая часть из того, что я знаю, пришла от торговли производными инструментами - опционы подтолкнули меня, к изучению вероятностной математики. Многие маниакальные игроки имели бы посредственные знания, если бы не приобрели замечательные навыки подсчета карт, благодаря своей страстной жадности.
Другую аналогию можно провести с грамматикой, которая часто более понятна и менее скучна, чем математика. Есть те, кто заинтересован грамматикой для пользы грамматики, и те, кто заинтересован в отсутствии ошибок при письме. Это как с "квантами" - подобно физикам, мы больше заинтересованы в использовании математического инструмента, чем в самом инструменте непосредственно. Математиками рождаются, но никогда не делаются. Физики и кванты также. Я не забочусь об "элегантности" и "качестве" математики, которую я использую, пока я могу получить правильный вывод. Я обращаюсь к помощи методов Монте-Карло всякий раз, когда это возможно. Они могут сделать работу и они, также, гораздо более обучающие, что позволяет мне использовать их в этой книге в качестве примеров.
Действительно, вероятность - это интроспективная область вопросов, поскольку она затрагивает более, чем одну науку, в особенности мать всех наук. Невозможно оценить качество знания, которое мы накапливаем без того, чтобы допустить долю случайности в манере, какой оно получено и нейтрализации аргументов в пользу случайного совпадения, которое могло просочиться при его строительстве. В науке, вероятность и информация рассматриваются в одинаковой манере. Буквально каждый большой мыслитель интересовался этим и большинство из них одержимо. Два самых больших ума, по моему мнению, Эйнштейн и Кейнс, оба начали свои интеллектуальные путешествия с этого. Эйнштейн написал свою главную работу в 1905, в которой он, почти первым, исследовал в вероятностных терминах последовательность случайных событий, а именно, эволюцию задержанных частиц в стационарной жидкости. Его работа по теории броуновского движения может использоваться в качестве основы для теорий случайных блужданий, используемых в финансовом моделировании. Что касается Кейнса, то для образованного человека, он - не политический экономист, на которого любят указывать, одетые в твид, левые, но автор авторитетного, интроспективного и мощного Трактата о вероятности. Прежде, чем окунуться в темную область политической экономии, Кейнс был вероятностником. У него были и другие интересные признаки, (он "взорвал" торговлю на своем счету после достижения чрезмерного богатства - понимание людьми вероятности, не переходит в их поведение).