Читать «Ткань космоса: Пространство, время и текстура реальности» онлайн - страница 17

Брайан Грин

Переход от точек к струнам, которые так малы, что выглядят как точки, может показаться не ахти каким революционным изменением. Но этот переход на самом деле существенен. Стартуя со столь скромного начала, теория суперструн объединяет общую теорию относительности и квантовую механику в единую связную теорию, изгоняя пагубные бесконечные вероятности, преследовавшие все ранее предпринимавшиеся попытки объединения. Более того, теория суперструн обладает достаточной широтой, чтобы вплести в единое полотно как все силы природы, так и все частицы материи. Короче говоря, теория суперструн вышла первым кандидатом на единую теорию, о которой грезил Эйнштейн.

Если эти утверждения верны, то они знаменуют собой грандиозный шаг вперёд. Но самое поразительное, к чему приводит теория суперструн и что взволновало бы сердце Эйнштейна, заключается в изменении наших представлений о ткани космоса. Как мы увидим, предлагаемое теорией суперструн объединение общей теории относительности и квантовой механики математически осуществимо только в том случае, если мы согласимся на ещё один переворот в наших представлениях о пространстве и времени. Вместо привычных нам трёх пространственных и одного временно́го измерения теория суперструн требует девяти пространственных и одного временно́го измерения. А в самом революционном воплощении теории струн, известном как М-теория, для великого объединения требуется десять пространственных и одно временно́е измерение — космический субстрат, состоящий из одиннадцати пространственно-временных измерений. Тот факт, что мы не видим этих дополнительных измерений, теория суперструн объясняет тем, что до сих пор мы улавливали лишь тонкий срез реальности.

Конечно, неподтверждённость существования дополнительных измерений может также означать и то, что их попросту нет и, значит, теория суперструн неверна. Однако не следует делать столь поспешных выводов. Ещё за десятилетия до возникновения теории суперструн самые смелые учёные, включая Эйнштейна, раздумывали над идеей существования дополнительных пространственных измерений, не видимых нами, а также делали предположения о том, где они могли бы скрываться. Теоретики, работающие над теорией суперструн, значительно развили эти идеи и пришли к выводу, что дополнительные измерения либо свёрнуты до таких крохотных размеров, что ни мы, ни наше оборудование не можем их увидеть (глава 12), либо велики, но невидимы на тех путях, на которых мы сейчас исследуем Вселенную (глава 13). В обоих случаях мы имеем очень далеко идущие последствия. Геометрическая форма микроскопических свёрнутых измерений, воздействуя на вибрационные моды струн, может дать ответ на самые основополагающие вопросы, такие как: почему в нашей Вселенной могут существовать звёзды и планеты? А если дополнительные измерения макроскопические, то, возможно, рядом с нами существуют соседние миры (соседние не в обычном пространстве, а с точки зрения дополнительных измерений), о которых мы до сих пор и не догадывались. Смелая идея существования дополнительных измерений является не просто каким-то теоретическим «журавлём в небе». Возможно, вскоре её удастся проверить. Если дополнительные измерения действительно существуют, то эксперименты на следующем поколении ускорителей элементарных частиц могут привести к таким впечатляющим результатам, как синтез микроскопических чёрных дыр или открытие целого семейства новых частиц (глава 13). Эти и другие поразительные результаты могут послужить первым доказательством существования других измерений, помимо видимых нами, и подвести нас на шаг ближе к утверждению теории суперструн в качестве искомой единой теории.