Читать «Взрывающиеся солнца. Тайны сверхновых» онлайн - страница 57

Айзек Азимов

Нейтронная звезда, как было сказано, способна уплотнить всю массу Солнца в шар размером не более 14 км в диаметре. Такая звезда гораздо меньше и плотнее белого карлика, имеет более сильное гравитационное поле.

В 1934 г. Цвикки, начинавший свои исследования сверхновых в других галактиках, высказал догадку о возможном существовании нейтронных звезд как конечного продукта гигантских взрывов.

Он понимал, что сверхновая, отдающая энергии в миллион раз больше, чем обычная новая, должна испытывать колоссальные взрывы. Громадный взрыв должен вести и к более разрушительному коллапсу. Даже если сжимающиеся остатки были бы недостаточно массивны, чтобы исключить образование нейтронной звезды, они могли бы сокращаться с достаточной скоростью по энергии, минуя стадию белого карлика. По этой причине нейтронная звезда могла бы кончиться массой, меньшей 1,44 массы Солнца.

Спустя какое-то время американский физик Роберт Оппенгеймер (1904–1967) и его ученик Джордж Михаил Волков разработали математические модели образования нейтронных звезд. Советский физик Лев Давидович Ландау (1908–1968) сделал то же самое независимо от них.

В тридцатые годы казалось вполне логичным, что результатом сверхновых было образование нейтронных звезд, но не было способа проверить это реальным наблюдением. Даже если нейтронные звезды действительно существовали, их крошечный размер, казалось, лишь подтвердил бы, что такая звезда, даже относительно близкая и наблюдаемая в крупный телескоп, выглядит чрезвычайно слабой. И если бы ее можно было увидеть, то решительно ничего нельзя было бы узнать о ней, кроме того, что она чрезвычайно слаба. Так, например, звезда в центре Крабовидной туманности была слабой, но как можно поручиться, что это нейтронная звезда, а не белый карлик? Однако, какой бы она ни была, сам факт, что ее можно видеть, склонял чашу весов в пользу белого карлика.

Впрочем, была одна смелая надежда. Сам акт катастрофического сжатия должен неизбежно сопровождаться огромным скачком температуры, поэтому поверхность нейтронной звезды в момент ее образования имела бы температуру порядка 10 000 000 °C. При такой температуре, даже допуская несколько тысяч лет остывания, ее излучение включало бы изрядную долю рентгеновских лучей.

Отсюда следует, что если звезда очень маленькая и тусклая, но из района ее нахождения в небе приходят рентгеновские лучи, то ее можно сильно подозревать в принадлежности к нейтронным.

Эта отчаянная надежда переплетается, однако, с одним грустным фактом. Рентгеновские лучи не могут пробить атмосферу: они взаимодействуют с молекулами и атомами воздуха и уже не выживают как таковые при своем подлете к земной поверхности. Поэтому нейтронные звезды, может быть, и посылают сигналы высоких энергий, но это не меняет дела, или, по крайней мере, так казалось в 30-х годах.

РЕНТГЕНОВСКИЕ ЛУЧИ И РАДИОВОЛНЫ