Читать «Большое, малое и человеческий разум» онлайн - страница 3
Стивен Уильям Хокинг
Собственно говоря, написанные Пенроузом разделы достаточно красноречивы, и поэтому мое предисловие имеет целью лишь подготовить читателя к обсуждению некоторых довольно сложных проблем современной науки, рассматриваемых ниже. Р. Пенроуз считается одним из самых блестящих математиков современности, но его исследования всегда имели весьма строгое физическое обоснование. Международное признание и славу он снискал своими достижениями в астрофизике и космологии, относящимися к релятивистской теории гравитации, причем многие работы были выполнены им совместно со Стивеном Хокингом. Одна из сформулированных им теорем в этой области доказывает, что (в соответствии с классической релятивистской теорией гравитации) внутри так называемых черных дыр возникают физические сингулярности пространства-времени, т.е. в некоторых точках искривленность пространства (или соответственно плотность материи) становится бесконечно большой. Вторая теорема о «бесконечности» утверждает, что классическая релятивистская теория гравитации неизбежно приводит к сингулярностям такого типа в космологических моделях, связанных с Большим Взрывом. Эти теоремы показывают, что используемые нами теории еще весьма далеки от завершенности, поскольку в замкнутых и зрелых физических построениях такие сингулярности не должны возникать.
Эти работы представляют собой лишь часть обширного вклада Р. Пенроуза в различные разделы физики и математики. Физикам хорошо знаком процесс Пенроуза (при котором частицы поглощают энергию вращения в черных дырах), и они широко пользуются созданными им диаграммами для описания поведения вещества в окрестности черных дыр. Красивая геометрия (временами напоминающая живопись) многих таких явлений наглядно представлена самим автором в первых трех главах книги. Некоторые аспекты рассматриваемых проблем уже широко известны публике по «невозможным» построениям и картинам знаменитого художника Мориса Эшера и так называемым «мозаикам» самого Пенроуза. Интересно, что М. Эшера на создание некоторых гравюр (именно тех, на которых сделана попытка изобразить «невозможное») вдохновила одна из статей, написанных Р. Пенроузом и его отцом Л. С. Пенроузом. В гл. 1 гиперболические геометрические построения Пенроуза проиллюстрированы известной серией гравюр М. Эшера «Предельные окружности». В связи с этим нельзя не упомянуть созданные самим Пенроузом «мозаики», или «изразцы», которые позволяют полностью покрыть бесконечную плоскость небольшим числом разновидностей простых геометрических фигур заданного типа. Основная и самая интересная математическая сторона проблемы состоит в том, что узор, позволяющий решить эту задачу, является неповторяющимся. Эта геометрическая задача неожиданно возникает в гл. 3 книги в связи с возможностью определения строгих вычислительных операций для компьютеров.