Читать «Стол находок утерянных чисел» онлайн - страница 48
Владимир Артурович Левшин
И вдруг он вскочил, сорвал с себя накладную бороду вместе с шапочкой и объявил, что весёлые математики по-прежнему веселы, молоды и юбилей собираются отпраздновать соответствующим образом. Без юбилейного елея. Без юбилейной скуки. Разнообразно, весело, содержательно. Для начала все приглашаются в парк, на торжественный запуск юбилейных змеев.
Змеи, привязанные к колышкам на большой поляне, гарцевали на месте, как застоявшиеся сказочные скакуны. Их длинные бахромчатые гривы так и стлались по ветру. Да они и впрямь были сказочными, эти на диво сработанные многоугольники!
На одном, квадратном, обклеенном золотой бумагой, выделялась надпись: «4=22». Другой, восьмиугольный, отливающий серебром, обозначался иначе: «8=23». Третий змей, обтянутый алым шёлком, — невиданное тридцатидвухугольное сооружение с бесчисленными ажурными переплетениями — нёс на себе числа: «32=25».
Сердце у меня ёкнуло от радостного предчувствия. Эти многоугольники и эти числа имели прямое отношение к моей статье — той самой, что напечатали в журнале «Энэмские математические новости». И стало быть, речь пойдёт о совершенных числах.
Я не ошибся. Перед запуском в небольшой вступительной речи президент «Весёлых математиков» так прямо и сказал.
— Дорогие друзья, — начал он. — Темой нашего юбилейного заседания избраны совершенные числа. И это неудивительно. Для юбилейной программы всегда отбирают самое лучшее. А что может быть лучше совершенства? Слово для первого сообщения предоставляется этим многоугольникам… — президент широким жестом указал в сторону змеев. — Но так как они изъясняются только на языке чисел и линий, придётся мне выступить в роли переводчика. Недавно в журнале «Энэмские математические новости» напечатана статья о связи совершенных чисел с геометрией. (Тут сердце у меня снова ёкнуло и заколотилось как бешеное!) Автор её подметил, а также математически доказал вот что: число сторон многоугольника в сумме с числом его диагоналей даёт число совершенное. Но происходит это лишь в том случае, если число сторон на единицу меньше простого числа и если оно в то же время равно двойке, возведённой в степень простого числа. Именно это свойство наглядно демонстрируют наши уважаемые докладчики. Первый из них — квадрат, фигура четырёхсторонняя. Совершенно очевидно, что 4 на единицу больше простого числа 3. Кроме того, 4 — это вторая степень числа 2. И показатель степени 2 — число простое. Выходит, сумма сторон квадрата и его диагоналей должна быть числом совершенным. Так оно и есть: 4+2=6. А 6 — число совершенное. То же можно проверить на двух других многоугольниках. У одного из них 8 сторон и 20 диагоналей, что в сумме даёт совершенное число 28. Исследовав число сторон 8, убедимся, что оно отвечает непременному условию, так как на единицу больше простого числа 7. Кроме того, 8 — это 2 в третьей степени, а показатель степени 3 — число простое. И наконец, то же подтверждает сверхсовершенный тридцатидвухугольный змей. Число его сторон на единицу больше простого числа 31. Но несмотря на то что 32 есть 2 в степени простого числа 5 (25=32), построить такой змей очень и очень непросто. Ведь у него не только 32 стороны, но и 464 диагонали! («У-у-у!» — выдохнули зрители.) И в сумме это составляет совершенное число 496… Говорят, где простота, там и совершенство, — продолжал президент. — Если кто-нибудь в этом сомневается, пусть поглядит на нашего тридцатидвухугольного змея. Сейчас он поднимется в воздух и покажет, на что способен.