Читать «Стол находок утерянных чисел» онлайн - страница 45
Владимир Артурович Левшин
Дрессировщик был вне себя от радости. Он превозносил и меня, и мой способ, и щедрость своего поставщика, который собирается заплатить такой дорогой ценой за решение задачи.
Но я сказал, что поставщик его оказался не только щедрым, но и милосердным. Ведь если бы в условии задачи не было сказано, что надо найти наименьшее из возможных чисел, так пришлось бы нам вычислять число посланных бананов до бесконечности. Потому что 102564 — это период бесконечного целого периодического числа. И, продолжив наше умножение тем же способом, мы снова и снова получим те же цифры, то же число. Нарастая справа налево, оно будет бесконечно повторяться и всегда при этом удовлетворять условию задачи. Потому что, каким бы длинным оно ни было, из скольких бы периодов не состояло, четвёрка, переставленная с конца в начало, непременно увеличит его вчетверо.
И тут меня перебила девочка.
— Какое совпадение! — ахнула она. — Какое удивительное совпадение! 102564 — это ведь то самое число, которое показывали в цирке воздушные гимнасты! Только там оно было периодом дроби, а здесь — целого числа…
Вот как! А я и не заметил… Впрочем, если это и совпадение, так чисто житейское, но никак не математическое. Почему? Да потому, что в том случае, когда последняя цифра числа, переставленная в начало, увеличивает его во столько же раз, число всегда будет одновременно периодом целого периодического числа и периодом дроби…
Девочку это слегка разочаровало, и я в виде утешения сказал, что таких чисел всего 9 — столько же, сколько цифр в нашей, десятичной системе счисления (нуль в данном случае не в счёт), и ничто ей не мешает вычислить тем же способом все остальные.
Но здесь произошло кое-что впрямь неожиданное. Одно из тех внезапных озарений, которые знакомы всем, кто занимается числами. И причиной его была девочка: ведь это она напомнила мне о цирке! Перед глазами у меня снова всплыли воздушные гимнасты и светящееся выражение «4:39 = 0, ». Потом оно преобразовалось, превратилось в дробь «4/39=0, » и я внезапно понял, что знаменатель дроби 39 есть не что иное как удесятерённый числитель минус единица
Оставалось подставить в равенство после запятой известные мне цифры 102564 — и новый, к тому же наипростейший способ нахождения подобных чисел был, как говорится, у меня в кармане! Надо лишь последнюю цифру разделить на её удеся-терённъе значение минус единица. Если это 2 — так на 20—1, если 3 — на 30—1 и так далее…
Сообщение моё привело в восторг всех, особенно дрессировщика. Он снова рассыпался в похвалах, сказал, что не знает, как отблагодарить меня, хотел было преподнести мне обезьяну, да передумал — обезьяны слишком проказливы… И вдруг его тоже озарило!