Читать «Суперсила» онлайн - страница 192

Пол Девис

Коротко говоря, второй закон термодинамики утверждает, что из беспорядка не может самопроизвольно возникнуть порядок. Точнее, этот закон как бы распоряжается тем «счетом» природы, величина которого измеряется энтропией – мерой беспорядка в физической системе. Когда речь идет о тепловых двигателях, энтропия характеризует наличие полезной энергии. В любом физическом процессе часть энергии ускользает из-под нашего контроля – рассеивается в окружающую среду. При этом упорядоченная энергия становится неупорядоченной и энтропия растет. Второй закон термодинамики запрещает уменьшение энтропии замкнутой системы. Даже самый эффективный двигатель не может вернуть теплоту, выделившуюся вследствие трения.

Можно было бы предположить, что среди столь разнообразных и сложных процессов природы (множество форм энергии и вещества, а также видов их активности) обнаружится хотя бы один случай нарушения закона. Однако этого не происходит. Какие бы новые виды вещества и взаимодействий ни обнаруживались, они неизменно подчиняются второму закону термодинамики.

Рассмотрим в качестве примера гравитацию. Эта область науки на первый взгляд не имеет прямого отношения к термодинамике. Тем не менее интересный мысленный эксперимент, предложенный Германом Бонди, показывает, что это не так. На рис. 29 изображен (я несколько видоизменил схему установки) тонкий стержень, изготовленный из жесткого оптического волокна. На каждом конце коромысла укреплены сферы, содержащие внутри по одному соответствующим образом подобранному атому; внешняя поверхность стержня посеребрена и непроницаема для света. Пусть первоначально возбужден атом в левой сфере. При этом он обладает большей энергией, чем такой же атом в правой сфере, а следовательно, и больше весит. Гравитация будет стремиться повернуть стержень так, что левая сфера пойдет вниз, а правая – вверх. Энергию этого движения можно использовать для запуска динамомашины, питающей двигатель. В конце концов стержень достигает предельного наклона, в наилучшем случае он займет вертикальное положение, причем возбужденный атом окажется внизу (рис. 29, б). В этот момент двигатель остановится.

До сих пор не произошло ничего особенно примечательного. Однако в этот момент мы вспоминаем, что возбужденные атомы обычно неустойчивы и в конечном счете переходят в невозбужденное состояние, испуская при этом фотоны. Когда это произойдет с возбужденным атомом в нижней сфере, по оптическому волокну снизу вверх побежит световой импульс. Попав внутрь верхней сферы, он возбудит находящийся там атом, сделав его тяжелее атома в нижней сфере. Тогда «голова» стержня перевесит и будет спускаться вниз, пока возбужденный атом вновь не окажется внизу, а невозбужденный – наверху.