Читать «Эврика-87» онлайн - страница 18

неизвестен Автор

По-видимому, среди них главные - вода и углекислота, но многое указывает и на присутствие в ядре других молекул, в том числе и органических.

Вещество ядра скорее всего представляет собой так называемый "клатрат", то есть обычный водный лед, в кристаллическую решетку которого, как уже говорилось, "вкраплены" другие молекулы. С клатратом перемешаны частицы метеоритного состава, каменистые и металлические. Химический состав таких твердых частиц, которые входили в состав ядра, но покинули его под давлением газовых потоков, измерялся на траектории полета "Веги-1 " и "Веги-2" при помощи пылеударного масс-спектрометра ПУМА. В этом хитроумном устройстве химическому анализу подвергается облачко плазмы, возникающее при ударе пылинок со скоростью около 80 километров в секунду. Всего был измерен химический состав около 2000 индивидуальных частиц. Он оказался очень сложным и неоднородным. Есть частицы с преобладанием металлов, таких, как натрий, магний, кальций, железо и других, с примесью силикатов. На спектрах масс чисто видны пики кислорода и водорода, указывающие на присутствие молекул воды. Наконец, есть пылинки, в которых наряду с металлами присутствует значительное количество углерода.

Наличие разнородных пылинок указывает на сложную тепловую историю первичного материала Солнечной системы.

В результате экспедиции "Вега" ученые впервые увидели кометное ядро, получили большой объем данных о его составе и физических характеристиках, сделали выбор в пользу одной из теоретических моделей и существенно уточнили ее. Грубая схема заменена картиной реального природного объекта, ранее никогда не наблюдавшегося. Внешне он несколько напоминает спутники Марса - Фобос и Деймос, но еще более близким аналогом могут оказаться некоторые малые спутники Сатурна и Урана. Это укладывается в рамки гипотезы, предполагающей, что кометные ядра образовались сравнительно недалеко от Солнца, примерно там, где находятся планеты-гиганты от Юпитера до Нептуна, и были отброшены на большие расстояния при формировании этих планет.

Помимо исследований химического состава пылинок, измерялись количественные характеристики пылевого потока - специальные счетчики определяли количество ударов частиц разной массы (один из счетчиков был создан совместно с учеными из Чикагского университета). Эксперименты с пылевыми счетчиками показали, что около миллиона тонн космической пыли покидает кометное ядро ежесуточно. Поток ее неоднороден - он больше над активными областями ядра, кроме того, имеются эффекты, связанные с различным влиянием светового давления на движение частиц разных масс и размеров. Весьма неожиданным оказался характер распределения частиц по размерам: было обнаружено аномально большое количество малых частиц размером порядка сотой доли микрометра.

Газ, испаряющийся с ядра кометы и распространяющийся в межпланетную среду со скоростью около одного километра в секунду, в конечном счете полностью ионизируется солнечным излучением. В результате возникает гигантское плазменное образование размером около одного миллиона километров, создающее препятствие на пути сверхзвукового потока солнечного ветра - плазмы из нагретой солнечной короны. Даже магнитосфера Земли, взаимодействие которой с солнечным ветром изучается уже более четверти века с начала космической эры, имеет в 10-15 раз меньшие размеры.