Читать «Физические эффекты и явления» онлайн - страница 16

неизвестен Автор

А.с. 232571: Способ измерения спорных реакций машин и

станков в эксплуатационных условиях,отличающийся тем,

что,с целью определения реакций в спорах с резиновым

упругим элементом, измеряют величину деформации свобод

ной поверхности резинового упругого элемента, по кото

рой судят о величине опорной реакции.

2.1.1. С в я з ь э л е к т р о п р о в о д н о с т и

с д е ф о р м а ц и е й.

В 1975 году зарегистрировано открытие: обнаружена зависимость пластической деформации металла от его проводимости. При переходе в сверхпроводящее состояние повышается пластичность металла. Обратный переход понижает пластичность.

Напомним, что макроскопическая пластическая деформация осуществляется перемещением большого количества дислокаций, способность же кристалла оказывать сопротивление пластической деформации определяется их подвижностью.

Эффект наблюдался на многих сверхпроводниках при различных способах механических испытаний. В экспериментах было обнаружено значительное повышение пластичности металла /разупрочнение/ при переходе его в сверхпроводящее состояние. Величина эффекта в некоторых случаях достигла нескольких десятков процентов.Детальное изучение явления разупрочнения привело к выводу,что "виновником" его следует считать изменение при сверхпроводящем переходе тормозящего воздействия электронов проводимости на дислокации. Силы "трения" отдельной дислокации об электроны в несверхпроводящем металле резко уменьшаются при сверхпроводящем переходе.Таким образом, обнаружена прямая связь механической характеристики металлаего пластичности с чисто электронной характеристикой-проводимостью.

Главный вывод-электроны металлов тормозят дислокации в с е г д а.Сверхпроводящий переход помог выявить роль электронов и позволил оценить электронную силу торможения. Но переход в сврхпроводящее состояние- не единственная возможность влиять на электроны. Этому служит магнитное поле, давление и т.д. Ясно, что такие воздействия должны изменять и пластичность металла, особенно, когда электроны- главная причина торможения дислокаций.

Магнитное поле в сочетании с низкой температурой способны изменять буквально все свойства вещества: теплоемкость, теплопроводность,упругость,прочность и даже цвет. Появляются новые электрические свойства. Превращения происходят практически мгновенно- за 10 в11-ой и 10 в12-ой сек. Исходя из экспериментов ожидают использования новых эффектов в обычных условиях.

2.1.2. Э л е к т р о п л а с т и ч е с к и й

э ф ф е к т в м е т а л л а х

Установлен электропластический эффект в металлах и доказана возможность его применения для практических целей. Открытие этого эффекта привело к более глубокому пониманию механизма пластической деформации, расширило представление о взаимодействии свободных электронов в металле с носителями пластической деформации-дислокациями.

Появилась возможность управлять механическими свойствами металлов, в частности, процессом обработки металлов давлением. Например, деформировать вольфрам при температурах не превышающих 200 гр.С и получить из него прокат с высоким качеством поверхности. В экспериментах с импульсным током было найдено, что электрический ток увеличивает пластичность и уменьшает хрупкость металла. Если создать хорошие условия теплоотвода от деформируемых образцов и пропускать по ним ток высокой плотности 10 в4-ой 10 в6-ой а/см./2 то величина эффекта будет будет порядка десятков процентов. Электрический ток вызывает также увеличение скорости релаксации напряжений в металле и оказывается удобным технологическим фактором для снятия внутренних напряжений в металле. Электропластический эффект также линейно зависит от плотности тока (вплоть до 10 в5-ой а/см./2 ) и имеет большую величину при импульсном токе, а при переменном вообще не наблюдается.