Читать «Том 15. От абака к цифровой революции. Алгоритмы и вычисления» онлайн - страница 8

Бизенц Торра

Вавилоняне также умели решать системы уравнений и уравнения второй степени с вещественными корнями. Эти задачи упоминаются в текстах, датируемых примерно 2000 годом до н. э. «Протоматематики» Вавилонии также умели решать некоторые уравнения третьей степени. Уравнения вида x3 = а или х + х2 = с решались с помощью таблиц. Более сложные уравнения, имевшие вид ах3 + Ьх2 = с, сводились к уравнениям первых двух видов.

Анализ вавилонских текстов показывает, что математика была для вавилонян не просто средством решения практических задач. В этом заключается ее фундаментальное отличие от древнеегипетской математики, которая считалась намного более утилитарной. Вавилоняне достигли значительных успехов в арифметике и алгебре, но в отличие от египтян не преуспели в геометрии. Знания геометрии в Вавилонии касались лишь немногих фигур, в частности треугольников и четырехугольников.

* * *

УРАВНЕНИЯ ВТОРОЙ И ТРЕТЬЕЙ СТЕПЕНИ

Уравнения второй степени вида ах2 + Ьх + с = 0 обычно решаются с помощью формулы

Эта формула позволяет получить вещественные решения, когда дискриминант положителен или равен нулю, то есть выражение Ь4ас больше либо равно нулю.

Для решения уравнений вида ах3 + Ьх2 = с вавилоняне умножали уравнение на (а2/Ь3) и получали уравнение вида (ах/b)3 + (ах/b)2 = са23 Оно решалось с помощью таблиц для уравнений вида х3 + х2 = с, после чего рассчитывалось значение х.

* * *

Однако труды вавилонян, посвященные окружностям, сохранились до наших дней. Именно вавилоняне разделили окружность на шесть частей построением окружностей радиуса, равного радиусу исходной окружности. Каждая из этих частей делилась на 60; таким образом, вся окружность делилась на 360 градусов. Так как использовалась шести десятеричная система, то градусы делились на 60 минут, минуты — на 60 секунд. В качестве приближенного значения π использовалось значение π = 3, хотя в табличке, найденной в Сузах, путем сравнения периметра шестиугольника и длины окружности получено значение π = 31/8.

Построение шестиугольника, вписанного в окружность. Сторона шестиугольника равна радиусу окружности.

Вычисления в Древнем Египте

В древнеегипетской системе счисления для степеней десяти использовались отдельные символы. Так, существовали особые символы для единиц, десятков, сотен и так далее.

Египетская система счисления, в отличие от вавилонской, не была позиционной. Далее мы продемонстрируем иероглифы, соответствующие наиболее часто используемым числам.

Египетская система счисления была аддитивной, в отличие от нашей системы счисления, которая, подобно вавилонской, является позиционной. В аддитивной системе счисления, например, число 3204 представляется в виде 1000 + 1000 + 1000 + 100 + 100 + 1 + 1 + 1 + 1. В виде египетских иероглифов оно записывается так: