Читать «Психодиагностика: учебник для вузов» онлайн - страница 165

Леонид Бурлачук

Если поделить матрицу корреляций рейтинговых оценок, данных студентами по списку качеств личности преподавателя (табл. 3.4) на два равных треугольника, проведя диагональ из левого верхнего угла в правый нижний угол, то можно увидеть, что это – симметричная матрица, в которой первая верхняя строка состоит из тех же оценок, что и первая колонка. Аналогично вторая строка включает те же самые элементы, что и вторая колонка, и т. д. Также нужно обратить внимание на то, что все числа на основной диагонали (начиная сверху слева вплоть до чисел внизу справа) равны +1,00 – это предполагаемая корреляция каждого задания шкалы с самим собой.

В психологическом тестировании цель факторного анализа заключается в том, чтобы найти несколько фундаментальных факторов, которые объясняли бы большую часть дисперсии в группе оценок по различным тестам или другим психометрическим измерениям. В вышерассмотренном примере – 11 переменных, поэтому для него задача факторного анализа заключается в том, чтобы найти матрицу факторных нагрузок или корреляции между факторами и заданиями шкалы. Существует несколько процедур факторного анализа, но все они предполагают две стадии: 1) факторизацию матрицы корреляций, с тем чтобы получилась первоначальная факторная матрица; 2) вращение факторной матрицы, с тем чтобы обнаружить наиболее простую конфигурацию факторных нагрузок (см. табл. 3.4).

Стадия факторизации в этом процессе призвана определить количество факторов, необходимых для объяснения связей между различными тестами, и обеспечивает получение первичных оценок нагрузки (веса) каждого теста по каждому фактору. Вращение факторов необходимо для того, чтобы сделать их более понятными (интерпретируемыми) с помощью создания конфигурации факторов, в которой совсем немного тестов имеют высокие нагрузки, тогда как большая часть тестов имеют низкие нагрузки по любому фактору.

Одна из наиболее известных процедур факторизации – метод главных осей (principal axis), а самая популярная процедура вращения – варимакс вращение.

Из табл. 3.5 видно, что выделяются три фактора, они представлены в колонках, обозначенных А, В, С. Величины, записанные под колонкой каждого фактора, – корреляции или нагрузки каждого из 11 заданий по этому фактору.

Например, задание 1 имеет нагрузку по фактору А равную 0,754; -0,271 – по фактору В и 0,250 – по фактору С. Сумма квадратов нагрузок по каждому из факторов позволяет определить долю дисперсии этого задания. Таким образом, доля дисперсии задания 1 равна:

(0,754)2 +(-0,271)2 +(0,250)2 =0,704.

Это означает, что 70,4 % вариаций показателей по заданию 1 объясняется действием этих трех факторов.

Факторно-аналитический подход позволяет также оценить надежность теста. Как известно, полная дисперсия теста равна сумме дисперсий для общих факторов, плюс дисперсии специфических факторов, плюс дисперсия погрешности. Следовательно, если мы осуществим факторный анализ теста, возведем в квадрат и суммируем нагрузки его факторов, то мы получим его надежность, поскольку нагрузки факторов представляют корреляцию теста с общими или специфическими факторами. Однако следует помнить, что такой способ установления надежности более всего подходит для уже факторизованного теста, нежели для тестов, которые могут измерять широкий набор разных факторов, часть которых могут и не входить в батарею изучаемых исследователем.