Читать «Психодиагностика: учебник для вузов» онлайн - страница 161
Леонид Бурлачук
3.5. Анализ заданий
Анализ заданий по результатам, полученным в пилотажном исследовании, имеет своей целью отбор наилучших заданий для окончательной версии опросника и включает в себя определение доли ответивших правильно (в соответствии с ключом) и дискриминантности каждого задания. Первый шаг состоит в том, чтобы составить таблицу анализа заданий (табл. 3.3), в которой каждая колонка
Следующим шагом будет вычисление показателя, определяющего долю испытуемых, ответивших в соответствии с «ключом» опросника или индекса эффективности задания. Этот показатель подсчитывается делением количества обследуемых, давших правильный (так называемый «ключевой») ответ, на их общее количество. В идеале этот индекс для каждого задания должен располагаться в интервале от 0,25 до 0,75, приближаясь в среднем к 0,5 для всего опросника. Индекс, меньший чем 0,25, показывает, что задание неэффективно потому, что очень многие обследуемые отвечают на него правильно, а выше 0,75 указывает на то, что на данное задание получено слишком много правильных ответов. В табл. 3.3 анализа заданий индекс эффективности для каждого задания получается следующим образом:
Также нужно удостовериться, просмотрев результаты в таблице анализа заданий, в том что хороший индекс эффективности, т. е. лежащий где-то посередине между крайними оценками, не просто означает выбор средних оценок в оценочном континууме каждым испытуемым, а представляет собой вариацию различных оценок.
Задания (вопросы, утверждения) только тогда следует включать в окончательную версию опросника, когда они измеряют те же самые личностные особенности, что и другие, предназначенные для этого задания. Для определения дискриминативности заданий используется коэффициент корреляции каждого задания с общим баллом всего теста. Чем выше коэффициент корреляции, тем выше дискриминантность задания, тем лучше задание. Это
Для расчета этого показателя чаще всего применяется коэффициент произведения моментов Пирсона (заметим, что он наиболее приемлем для оценивания заданий, имеющих пять и более вариантов ответа, а в случае дихотомических заданий используется точечно-бисериальная корреляция). Вычисления обычно производятся с помощью специальных компьютерных программ, однако каждый разработчик тестов должен хотя бы один раз провести расчеты вручную. Это дает возможность проникновения в смысл того, что происходит с заданиями теста. Тем читателям, которые попытаются осуществить эту процедуру, напоминаем, что коэффициенты корреляции всегда меньше +1 и больше -1. Если получено значение коэффициента, выходящее за границы этого интервала, значит, допущена ошибка в расчетах. Формула коэффициента произведения моментов Пирсона имеет вид: