Читать «Происхождение Вселенной» онлайн - страница 2
Коллектив авторов
В 2016 году мы столкнулись, вероятно, с самым «релятивистским» моментом в истории, когда ученые сумели обнаружить гравитационные волны, рожденные в результате столкновения двух черных дыр и блуждавшие в расширяющемся пространстве-времени миллиарды лет. Вскоре гравитационно-волновые детекторы и радиотелескопы начнут исследовать природу горизонта событий, черту невозврата на краю черной дыры, чтобы узнать, действует ли теория относительности в этих экстремальных условиях. Между тем на стыке теории относительности и квантовой механики возникают все новые и новые гипотезы, от суперструн до квантовых треугольников и других необычных идей, соревнующихся друг с другом в попытке более глубоко объяснить сущность реальности. Рано или поздно даже Эйнштейн должен быть превзойден!
В книгах этой серии собраны мысли ведущих физиков и лучшие статьи, опубликованные в журнале
Стивен Бэттерсби , редактор
Глава 1
Истоки теории относительности
В 1915 году в голове клерка из швейцарского патентного бюро родилась идея, которая перевернула наши представления о пространстве и времени. Этим клерком был Альберт Эйнштейн (1879–1955), а идея, которую он выдвинул, называется общей теорией относительности. Эта глава описывает путь, пройденный автором и приведший его к судьбоносному открытию.
Относительно краткая история
Эта история началась тогда, когда шотландский физик Джеймс Клерк Максвелл (1831–1879) создал теорию, в которой сумел объединить казавшиеся ранее разнородными физические понятия. В 1860-е годы ему удалось собрать воедино различные теории магнитного и электрического поля и описать их с помощью единой системы уравнений. Не менее замечательным оказалось следующее предсказание Максвелла: объединившись, электрические и магнитные поля образуют волну, которая распространяется со скоростью света. К концу XIX столетия становится ясно, что это далеко не случайность: ведь сам свет состоит из таких «электромагнитных волн».
Удивительно, но из уравнений следовало, что волны всегда распространяются с одной и той же скоростью, независимо от того, находится ли в движении их источник. Более того, ваша скорость как наблюдателя тоже не имела значения. В этом было что-то неправильное. Если я бросаю предмет вперед из движущегося экипажа, он должен лететь быстрее, чем если бы я его бросил, стоя на месте. Почему свет должен быть исключением?
Исходя из этой логики, ученые начали проводить исследования, ставившие своей целью найти изменения скорости света. Самым известным стал эксперимент, проведенный в 1887 году американскими физиками Альбертом Майкельсоном (1852–1931) и Эдвардом Морли (1838–1923). Они пытались наблюдать изменения скорости света по мере того, как Земля вращается вокруг оси и вокруг Солнца. Луч света расщеплялся на два пучка, которые посылались вдоль двух направлений под прямым углом друг к другу. Физики хотели обнаружить небольшую разницу во времени прохождения пучков света вдоль этих направлений. Ведь установка была по-разному ориентирована по отношению к движению Земли. Но, несмотря на всю скрупулезность и тщательность измерений, результат был одним и тем же: скорость света оставалась неизменной.