Читать «Популярная информатика» онлайн - страница 6
Николай Николаевич Чурсин
Попытки количественного измерения информации предпринимались неоднократно. Первые отчетливые предложения об общих способах измерения количества информации были сделаны Р. Фишером (1921 г.) в процессе решения вопросов математической статистики. Проблемами хранения информации, передачи ее по каналам связи и задачами определения количества информации занимались Р. Хартли (1928 г.) и X. Найквист (1924 г.). Р. Хартли заложил основы теории информации, определив меру количества информации для некоторых задач. Наиболее убедительно эти вопросы были разработаны и обобщены американским инженером Клодом Шенноном в 1948 г. С этого времени началось интенсивное развитие теории информации вообще и углубленное исследование вопроса об измерении ее количества в частности.
Для того чтобы применить математические средства для изучения информации, потребовалось отвлечься от смысла, содержания информации. Этот подход был общим для упомянутых нами исследователей, так как чистая математика оперирует с количественными соотношениями, не вдаваясь в физическую природу тех объектов, за которыми стоят соотношения. Например, если находится сумма двух чисел 5 и 10, то она в равной мере будет справедлива для любых объектов, определяемых этими числами. Поэтому, если смысл выхолощен из сообщений, то отправной точкой для информационной оценки события остается только множество отличных друг от друга событий и соответственно сообщений о них.
Предположим, нас интересует следующая информация о состоянии некоторых объектов: в каком из четырех возможных состояний (твердое, жидкое, газообразное, плазма) находится некоторое вещество? на каком из четырех курсов техникума учится студент?
Во всех этих случаях имеет место неопределенность интересующего нас события, характеризующаяся наличием выбора одной из четырех возможностей. Если в ответах на приведенные вопросы отвлечься от их смысла, то оба ответа будут нести одинаковое количество информации, так как каждый из них выделяет одно из четырех возможных состояний объекта и, следовательно, снимает одну и ту же неопределенность сообщения.
Неопределенность неотъемлема от понятия вероятности. Уменьшение неопределенности всегда связано с выбором (отбором) одного или нескольких элементов (альтернатив) из некоторой их совокупности. Такая взаимная обратимость понятий вероятности и неопределенности послужила основой для использования понятия вероятности при измерении степени неопределенности в теории информации. Если предположить, что любой из четырех ответов на вопросы равновероятен, то его вероятность во всех вопросах равна 1/4. Одинаковая вероятность ответов в этом примере обусловливает и равную неопределенность, снимаемую ответом в каждом из двух вопросов, и, следовательно, каждый ответ несет одинаковую информацию.