Читать «Маленькая книга о черных дырах» онлайн - страница 96
Стивен Габсер
Мы нарочно начали с одной из простейших квантово-механических систем, которые нам известны: системы спинов индивидуальных электронов. Есть надежда, что на базе подобных простых систем будут построены квантовые компьютеры. Система спинов индивидуальных электронов или другие эквивалентные квантовые системы сейчас называются кубитами (сокращение от «квантовые биты»), что подчеркивает их роль в квантовых компьютерах, аналогичную роли, которую играют обычные биты в компьютерах цифровых.
Представим себе теперь, что мы заменили каждый электрон гораздо более сложной квантовой системой со многими, а не только двумя квантовыми состояниями. Например, дали Алисе и Бобу бруски из чистого магния. Прежде чем Алиса и Боб разойдутся по своим делам в разные стороны, их бруски могут взаимодействовать, и мы договоримся, что при этом они приобретают определенное общее квантовое состояние. Как только Алиса и Боб расходятся, их магниевые бруски перестают взаимодействовать. Как и в случае с электронами, каждый брусок находится в неопределенном квантовом состоянии, хотя вместе, как мы считаем, они образуют состояние вполне определенное. (В этом обсуждении мы предполагаем, что Алиса и Боб способны перемещать свои магниевые бруски, никак не нарушая их внутреннего состояния, точно так же как прежде мы предполагали, что Алиса и Боб могли разделять свои запутанные электроны, не меняя их спинов.) Но различие между этим мысленным экспериментом и экспериментом с электронами заключается в том, что неопределенность квантового состояния каждого бруска огромна. Брусок вполне может приобрести больше квантовых состояний, чем число атомов во Вселенной. Вот тут-то на сцену и выходит термодинамика. Очень неточно определенные системы могут, тем не менее, иметь некоторые хорошо определенные макроскопические характеристики. Такой характеристикой является, например, температура. Температура – это мера того, с какой вероятностью любая часть системы имеет определенную среднюю энергию, причем более высокая температура соответствует большей вероятности иметь большую энергию. Другой термодинамический параметр – энтропия, по сути, равная логарифму количества состояний, которые система может принимать. Еще одна термодинамическая характеристика, которая была бы существенна для бруска магния, – это его суммарная намагниченность, то есть, в сущности, параметр, показывающий, насколько больше в бруске может быть электронов со спином, направленным вверх, чем со спином, направленным вниз.