Читать «Маленькая книга о черных дырах» онлайн - страница 71

Стивен Габсер

Как и тогда, когда мы говорили о рентгеновских двойных, мы должны проявить осторожность, думая о том, насколько уверенно мы можем утверждать, что ядра квазаров являются черными дырами. Это утверждение восходит к 1969 году, когда британский астрофизик Дональд Линден-Белл понял, что единственный способ объяснить фантастическую светимость AGN – это предположить, что источником их энергии являются черные дыры. Правда, он употреблял забавное выражение «горловина Шварцшильда» вместо термина «черная дыра», предложенного за несколько лет до того Джоном Уилером. Идея Линден-Белла для объяснения излучения квазара была все той же, что и для рентгеновской эмиссии источника Cyg X-1: аккреционный диск.

Отличие AGN состоит в том, что черные дыры в них гораздо больше, чем в двойных системах, поэтому пик светимости аккреционных дисков достигается на соответственно более длинных волнах. В результате AGN имеют наибольшую яркость в радио и оптическом диапазонах спектра. Большой размер объясняет также и наблюдаемую переменность излучения квазаров на шкале времени от минут до часов: она имеет ту же природу, что и миллисекундные квазипериодические осцилляции, наблюдаемые у Cyg X-1, а более длинные периоды связаны с тем, что у сверхмассивных черных дыр гораздо большие радиусы ISCO-орбит. Аккреционные диски вокруг сверхмассивных черных дыр состоят из газа и пыли, поступающих из окружающего их внутригалактического пространства, а иногда и из случайных звезд, неосторожно подошедших слишком близко к черной дыре и разорванных на части мощными приливными силами вблизи ее горизонта. В целом количество вещества, поглощаемого черной дырой из ее аккреционного диска, может достигать десятков или даже сотен солнечных масс в год. Именно аккреционные диски, а не сами черные дыры испускают свет. Они – маяки ранней Вселенной: ведь свет, который доходит к нам от них, был испущен миллиарды лет назад.

На первый взгляд может показаться удивительным, что какой-то аккреционный диск может давать достаточно энергии для того, чтобы квазар мог затмевать своим сиянием все остальные звезды галактики, вместе взятые.

Источник этой энергии – гравитационная потенциальная энергия вещества, обращающегося по орбите вокруг черной дыры. Это та самая потенциальная энергия, с которой мы каждый день сталкиваемся на Земле. Например, именно ее преобразуют в электрический ток гидроэлектростанции. Вода, падающая с большой высоты, отдает свою гравитационную потенциальную энергию, которую электростанции преобразуют в то самое электричество, что заставляет светить наши настольные лампы. В квазарах происходит нечто похожее, только энергия, которую они производят, в миллион триллионов триллионов раз больше той, которую вырабатывает крупная гидроэлектростанция. Когда мы говорим о черных дырах, количество потенциальной энергии, которая может превращаться в другие формы энергии при падении вещества с большого расстояния на ISCO-орбиту, удобно характеризовать как долю потенциальной энергии от общей энергии, соответствующей массе покоя (E = mc²) этого вещества. Эта величина зависит от вращения черной дыры, так как от него зависит положение ISCO-орбиты. Для невращающейся черной дыры она составляет 6 %, возрастая до 42 % для максимально быстро вращающейся. Это огромный процент! Ведь, например, потенциальная энергия воды, падающей с высоты 100 метров, составляет триллионную долю процента от ее общей энергии, соответствующей массе покоя. Наиболее эффективный доступный нам сегодня источник энергии – энергия распада ядер урана в ядерных реакторах. Если полностью использовать все урановое топливо в реакторе, эквивалент выделившейся энергии составит менее 0,1 % массы покоя урана. И все же энергия, выделяемая аккреционным диском, составляет лишь небольшую долю теоретически возможной для черной дыры. Считается, что большинство AGN «работают» с эффективностью, близкой к максимально возможной, но все-таки не равной ей. Главная причина этого вот в чем: когда газ нагревается и начинает излучать гигантскую энергию, тепловое давление в нем становится достаточно большим, чтобы противодействовать центростремительному потоку газа. В результате часть его выбрасывается наружу, образуя подобие звездного ветра.