Читать «Маленькая книга о черных дырах» онлайн - страница 13
Стивен Габсер
Попробуем сделать это так: установим два идеально отражающих зеркала в точности друг напротив друга и заставим два идентичных световых импульса носиться туда и сюда между зеркалами так, чтобы они всегда двигались в противоположных направлениях. Покажем, что эта воображаемая установка, по сути, является массивным телом. Представим себе, что мы способны сделать зеркала очень легкими – настолько, что в своих вычислениях как массы, так и энергии массой зеркал мы можем пренебречь. Тогда энергия нашего «массивного тела» будет вдвое больше энергии каждого из световых импульсов. Его количество движения в точности равно нулю, так как один световой импульс имеет количество движения, направленное вверх, в то время как у другого импульса его количество движения направлено вниз, и эти противоположно направленные векторы в сумме дают ноль. Ведь наше «тело» в целом никуда не движется: движутся только его части.
Чтобы вывести, наконец, из этой модели уравнение E = mc², нам осталось как-то привести нашу хитроумную конструкцию из зеркал и световых импульсов в движение. Для простоты давайте отслеживать поведение лишь одного из импульсов: если следить за обоими, и энергия и масса будут просто вдвое больше, вот и всё. Проще будет считать, что наша конструкция движется в плоскости, перпендикулярной бегающим вверх-вниз между зеркалами световым лучам, – в горизонтальной плоскости. Как только движение началось, световой импульс уже не бегает просто вверх и вниз. Теперь он перемещается и в горизонтальной плоскости, влево-вправо. Вот тут-то и начинает работать геометрия. Движение импульса в горизонтальной плоскости происходит со скоростью v, а движения вверх-вниз – со скоростью c. (На самом-то деле эти последние движения имеют скорость чуть меньшую световой, так как скорости света должна быть равна полная скорость светового импульса. Но при той точности, которая нам нужна, эту деталь можно проигнорировать.)
Другими словами, можно сказать, что в горизонтальной плоскости происходит v/c часть общего движения светового импульса. Тогда можно утверждать, что количество движения фотона в горизонтальной плоскости pвлево-вправо – это v/c, умноженное на его общее количество движения p = E/c, то есть pвлево-вправо= Ev/c². Но с другой стороны, pвлево-вправо= mv, что справедливо, так как pвлево-вправо – это количество движения в горизонтальной плоскости всей нашей конструкции в целом (не забудем, что мы отслеживаем только один из двух световых импульсов), а мы рассматриваем нашу внушительную установку как массивное тело. Стоит теперь только объединить наши два способа записи pвлево-вправо, как мы получим Ev/c2 = mv. Упростим это уравнение, и вот перед нами… барабанная дробь… E = mc2!