Читать «Маленькая книга о черных дырах» онлайн - страница 100
Стивен Габсер
Но тогда выходит, что вычисленная Унру температура, похоже, просто фикция – она является не столько свойством плоского пространства как такового, сколько свойством наблюдателя, испытывающего в плоском пространстве постоянное ускорение. Однако и само тяготение является такой же «фиктивной» силой в том смысле, что «ускорение», которое им вызывается, есть не что иное, как движение по геодезической в искривленной метрике. Как мы уже объясняли в главе 2, эйнштейновский принцип эквивалентности состоит в том, что ускорение и тяготение, в сущности, эквивалентны. С этой точки зрения нет ничего особенно шокирующего в том, что горизонт черной дыры имеет температуру, равную вычисленной Унру температуре ускоряющегося наблюдателя. Но, можем мы спросить, какое же значение ускорения нам следует использовать для определения температуры? Удаляясь на достаточно большое расстояние от черной дыры, мы можем сделать ее гравитационное притяжение сколь угодно слабым. Следует ли из этого, что для определения измеряемой нами эффективной температуры черной дыры нам надо использовать соответствующее малое значение ускорения? Этот вопрос оказывается довольно коварным, ведь, как мы полагаем, температура объекта не может произвольно уменьшаться. Предполагается, что она обладает некоторым фиксированным конечным значением, которое может измерить даже очень удаленный наблюдатель.
Точка зрения, более или менее соответствующая духу трактовки температуры черной дыры Хокинга, заключается в том, что для ее определения мы должны использовать ускорение наблюдателя, «висящего» в непосредственной близости от горизонта черной дыры, но затем уменьшить это значение температуры на коэффициент гравитационного красного смещения, испытываемого этим наблюдателем. Такой взгляд в наибольшей степени соответствует хокинговской процедуре вычисления температуры. Давайте шаг за шагом рассмотрим эту процедуру для случая шварцшильдовской черной дыры. Говоря о «парящем» или «подвешенном» наблюдателе, мы имеем в виду такого, который остается на фиксированном радиусе над горизонтом, но при этом не совершает орбитального движения вокруг черной дыры. Для того чтобы этого добиться, этому статическому наблюдателю – назовем ее Анной – придется постоянно отталкиваться от черной дыры, к примеру, при помощи ракетного двигателя. Если Анна пользуется только своей локальной геометрией, то принцип эквивалентности говорит ей, что она не сможет отличить ее от плоского пространства, через которое она движется с постоянным ускорением. Чем ближе Анна к фактическому горизонту черной дыры, тем большим становится это видимое ускорение. В соответствии с вычислениями Унру, Анна будет ощущать температуру, равную своему ускорению, деленному на 2π. Похоже, мы снова оказываемся в той же ловушке: ощущаемая наблюдателем температура зависит от его положения. Выход из этого тупика в том, что Анна также испытывает и значительное гравитационное красное смещение по сравнению с другим наблюдателем – назовем его Барт, – который держится от черной дыры на почтительном расстоянии. (В данном контексте это значит, что расстояние от Барта до черной дыры многократно превышает радиус Шварцшильда.) Чем ближе будет Анна к горизонту, тем выше будет ей казаться температура Унру. Но то, что ее гравитационное красное смещение возрастает, означает, что к тому моменту, как видимое Анной излучение выкарабкается из гравитационного поля черной дыры и достигнет Барта, оно будет соответствовать конечной температуре, которая не будет изменяться по мере того, как Анна будет приближаться к горизонту. Эта конечная температура и есть температура Хокинга, и, умножая ее на 2π, мы получим величину, называемую