Читать «Красота в квадрате» онлайн - страница 10
Алекс Беллос
Для подтверждения гипотезы о том, что предпочтения в выборе продукта зависят от скорости обработки чисел мозгом человека, Кинг и Янишевски решили провести еще один эксперимент, в ходе которого в рекламу бренда с числом в названии были включены другие цифры. Сначала исследователи придумали Solus 36 и Solus 37 — два вымышленных типа контактных линз реально существующего бренда Solus. Затем составили четыре рекламных объявления: одно для Solus 36, второе для Solus 37 и по одному для каждого продукта со строкой «6 цветов, 6 вариантов посадки». В случае объявлений без дополнительной строки респонденты отдавали предпочтение линзам Solus 36, как и ожидалось. Но, когда эта строка добавлялась, популярность линз Solus 36 увеличивалась, а спрос на линзы Solus 37 падал еще больше. Кинг и Янишевски пришли к выводу, что, поскольку сочетание чисел 6, 6 и 36 хорошо нам знакомо по таблице умножения (6 × 6 = 36), это повышает скорость их обработки мозгом, тогда как сочетание чисел 6, 6 и 37, не связанных между собой арифметически, обрабатывается гораздо медленнее. По мнению исследователей, под воздействием удовольствия, обусловленного подсознательным распознаванием простой операции умножения, у нас поднимается настроение — и мы ошибочно относим это состояние на счет удовлетворенности продуктом. Кинг и Янишевски утверждают: включение скрытых арифметических операций в рекламные объявления помогло бы компаниям увеличить объем продаж.
По мнению Кинга и Янишевски, наша чувствительность к тому, делится ли число без остатка или нет, влияет на наше поведение. Все мы немного похожи на Джерри Ньюпорта, таксиста из Тусона, раскладывающего числа на простые множители. Деление на два — это самый ранний и естественный тип деления. Именно поэтому мы настолько восприимчивы к арифметической закономерности, культурные ассоциации с которой глубоко укоренились в нашем сознании, — к различиям между четными и нечетными числами.
Числа изобретены для подсчета точного количества: три зуба, семь дней, двенадцать коз. Однако, когда количество становится достаточно большим, мы перестаем использовать числа в их точном значении и прибегаем к аппроксимации, беря округленное число в качестве опорной точки. Например, когда я говорю, что на рынке была сотня людей, я не имею в виду, что там находилось именно сто человек. А утверждение, что Вселенной около 13,7 миллиарда лет, не означает, что ей 13 700 000 000 лет, ей 13,7 миллиарда лет плюс-минус несколько сотен миллионов лет. Большие числа воспринимаются как приближенные величины, тогда как малые числа — как величины точные, и между этими двумя системами очень непростое взаимодействие. Явно некорректным выглядит заявление, что в следующем году Вселенной исполнится 13,7 миллиарда и один год: ей по-прежнему будет 13,7 миллиарда лет до конца наших дней.